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The model

- We are studying at a XXZ-like deformation of the Haldane-Shastry spin chain, where
the Yangian symmetry can be deformed to a quantum affine symmetry

- The model does not possess translational invariance but there is something that replaces it
(quasi-translation invariance)

+ The Hamiltonian is naturally expressed in terms of Temperley-Lieb generators
« When the quantum deformation parameter ( is a root of unity the representations are not
isomorphic to the generic ones; for g=i a gl(1|1) structure shows up, we expect gl(2|1)

at q"3=1 (the so-called combinatorial point A = —1/2)

« g=11s the free-fermionic point for XXZ, solvable by Jordan-Wigner. Similar situation

here but the boundary conditions render the fermions non-unitary [Gainutdinov, Read,
Saleur, 11]

+ The even and odd length chains have radically different properties

to appear; w/ A. Ben Moussa, J. Lamers, D.S., A. Toufik
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The isotropic Haldane-Shastry Hamiltonian

[Haldane, 88; Shastry, 88]

+ N su(2) spins 1/2 on a circle with periodic boundary conditions zj — wl = e2™I/N
Hyg = — g V(zi,25) Py
7]
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also solvable for su(n) spins in fundamental representation

- Yangian symmetry and 2dCFT limit: [Haldane, Ha, Talstra, Bernard, Pasquier, 92]

algebraic structure:  [Bernard, Gaudin, Haldane, Pasquier, 93]

. ] o [Bernard, Pasquier, D.S. 94;
» Yangian and spinon description of su(2)x=1 CFT:
Bouwknegt, Ludwig, Schoutens, 94]



The spectrum of the Haldane-Shastry Hamiltonian

[Haldane, Ha, Talstra, Bernard, Pasquier, 92]
[Bernard, Gaudin, Haldane, Pasquier, 93]

The model 1s Yangian symmetric (huge degeneracy) and the spectrum is encoded by motifs:
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each motif corresponds to a Yangian representation

“Heisenberg model without bound states”

this structure of the spectrum will be conserved by the q-deformation we are considering



The q-Haldane-Shastry Hamiltonian (Uglov-Lamers)

[Bernard, Gaudin, Haldane, Pasquier, 93; Cherednik 92; Uglov 95; Lamers 18; Lamers, Pasquier, D.S., 22]

The XXZ model can also be deformed to accommodate for long-range interaction,
at the price of introducing multi-spin interaction
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The Uglov-Lamers Hamiltonians

Several new features compared to the case g=1:

- the model 1s not translationally invariant (but there is a g-translation operator, G)
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- there exists another Hamiltonian with the opposite “chirality”
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The Uglov-Lamers Hamiltonians

~ N]

HL:[—E: . 2:) Sk ~ [N]

N = V(Zz’zj) S[%J] HR = W E V(ZZ, Z]) S[lj’j]
1<J

HY HY =0

Both Hamiltonians can be diagonalised simultaneously and the spectrum can be
written 1n terms of motifs, with eigenvalues (not real, for |g|=1)

1~ ~
H= 5(HL +H®)  has real spectrum both for q real and |q| = 1

c(n) = 5 ((n) + () = S [V — ]

g-number generalisation of HS magnon dispersion relation



Temperley-Lieb algebra and the g=i limit

o

q—q z z
(Uj — j—|—1)

- generators of the Temperley-Lieb algebra: ¢, = —hy; 11 —

e;=(qa+a7") e

_ . XXZ hamiltonian density
= e,

€j€i+165
ejer = €kE; (for j #k, k£1),

- for particular boundary conditions, the open XXZ chain has U,sl(2) symmetry

N_1 [Pasquier, Saleur, 90]
—1

open q .
Hyxy = E :h99+1 o) Cj
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« The gHS model 1s defined in terms of the XXZ R-matrix

Ripr1(w) =1 — f(u) e, fu) = qs:;—l

at q=i we have ¢ =0 and f (u™')=—f(u) — great simplification (free fermions)



The Uglov-Lamers model at g=i

- 1n this case the spin interaction can be written exclusively with in terms of nested
commutators of the TL generators
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!

Jacobi identity and TL algebra
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The Uglov-Lamers model at g=i

There are several subtleties in defining the Hamiltonian at q=i :

since [Qk] =0 and [Zk + 1] = (—1)k
1
at N =2L+1; e(n) = §[n] [N —n] =0 the total energy is identically zero

—n , n = 2k

but en) = —ein) = {N —n, n=2k-+1

the total Hamiltonian is also zero for odd number of sites:
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e g l1<p<qg<N explicit but tedious expressions/proof
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The Uglov-Lamers model at g=i

One can get a non vanishing non-chiral Hamiltonian by expanding to the next order in

q+qt
ﬁ = lim H
q—=iq+q!

[ﬁv ﬁR] — _[ﬁv ﬁL] =0

- the eigenstates of the chiral and the rescaled Hamiltonians are the same

- the equivalent of the highest weight vectors can be constructed using a similar

procedure to Haldane-Shastry

result for the one-magnon dispersion relation: -5

g—iq+q!
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Th Uglov-Lamers model at q=i

Explicit expression for H ?

H= Z P t:mn {e[kyl—i-l]’ e[m’”“‘l]}

E<l<m<n

explicit coefficients anti-commutators of nested
commutators of TL generators



Non-unitary fermions

+ The Temperley-Lieb generators at g=1 are expressible in terms of non-unitary fermions

{f7, fe} = (=1)7 & [Gainutdinov, Read, Saleur, 11]
- Compare with Jordan-Wigner fermions: fi=(=i) ¢, fi = (=) ¢;
- Convenient variables: two-site operators g9i = fi+ fivs 9f =f + i
then: ej = 9 9j
ehgamit] = ([ €5, €iqal, -] €pman] = (1) DI (g g+ (—1)m9j+9j,+”?)

quadratic in fermions— 1"

{epi+1) €mntu}  quartic in fermions —> H

However H" not diagonalisable by Fourier transform (absence of translational invariance)!

— the excitations are fermions dressed with some statistical interaction (fermionic magnons)



Fermions and wave functions

AL quadratic in fermions

However H" not diagonalisable by Fourier transform (absence of translational invariance)

— the excitations are fermions dressed with some statistical interaction (fermionic magnons)

U =GR G o fF 4 lower

N
one-magnon state: {n}) => w"™ Uf|0)
k=1
N
two-magnon highest weight state: {n1,na}) = ) Poy g (W, W) Uf Wt |0)
(conjecture) 1<k

NB: exact expression for the highest weight eigenvectors in the spin language
[Lamers, Pasquier, D.S., 22]

expression of the Hamiltonians in terms of  ¥;7?



Even number of sites

The second subtlety appears at N even N = 2L

in this case the dispersion relation 1s regular (non-vanishing), but there are divergences
(double poles) in the matrix elements of the Hamiltonians, since:

1 9
(q+q71)? - q+q!

Vjj+L =

One of the poles is removed by the factor [N] in the Hamiltonian, but the second has to
be removed “by hand” by multiplication with q +q~!

Result: a Hamiltonian with finite matrix elements but with identically zero eigenvalues!'

1

Example: for N=2 2H = = 1s a projector with eigenvalues 073, 1
q-Tdg
0 0 0 0
-1 .
after rescaling, 2H(q+q ') =¢; = 8 q_l ql 8 —5 Jordan block at g=1
0 0 0 0



Symmetry

Algebraic origin of the Jordan blocks at N even: gl(1|1) symmetry

at each site we have a gl(1]1) representation with alternating central charge £;
|Gainutdinov, Read, Saleur, 11]

{7 iy =(=1Y=E;, Nj=(-1ff;,
Ny fil=—f,  INuf=1
N N

N
global generators: Fr=>fr, FR=>fi, N=>(-1ff-L, E=) E
=1

J=1 g=1

central element

Jordan blocks <+— indecomposable representations of gl(1|1), at E=0

Experimentally, at larger lengths N=2L, the largest Jordan cell has size L+1

sign of extended gl(1|1) symmetry



Conclusions and open questions

+ New fermionic long-range integrable model with extended (super)symmetry

- The odd and even lengths have very different properties (linear dispersion
relation vs. Jordan blocks)

+ Closed form expressions for the (regularised) matrix elements

- Wave functions in the fermionic representation

- Even length chain and interpretation of the Jordan block structure

- Extended symmetry of the model in the limit g=1

-+ Relation with non-unitary CFTs

+ Other roots of unity: q*3=1 and c=0 CFT; gI(2|1) symmetry



