A solvable non-unitary fermionic model with extended symmetry

D. Serban

IPhT Saclay

Integrable Systems and Field Theories 65th Birthday of Fedor Smirnov

Paris, 11-13 October 2023

The model

$$
\Delta=\frac{\mathrm{q}+\mathrm{q}^{-1}}{2}
$$

- We are studying at a XXZ-like deformation of the Haldane-Shastry spin chain, where the Yangian symmetry can be deformed to a quantum affine symmetry
- The model does not possess translational invariance but there is something that replaces it (quasi-translation invariance)
- The Hamiltonian is naturally expressed in terms of Temperley-Lieb generators
- When the quantum deformation parameter \mathbf{q} is a root of unity the representations are not isomorphic to the generic ones; for $\mathrm{q}=\mathrm{i}$ a $\mathrm{gl}(1 \mid 1)$ structure shows up, we expect $\mathrm{gl}(2 \mid 1)$ at $\mathrm{q}^{\wedge} 3=1$ (the so-called combinatorial point $\Delta=-1 / 2$)
- $q=i$ is the free-fermionic point for $X X Z$, solvable by Jordan-Wigner. Similar situation here but the boundary conditions render the fermions non-unitary [Gainutdinov, Read, Saleur, 11]
- The even and odd length chains have radically different properties

Plan

- Brief reminder of the isotropic Haldane-Shastry model
- The q-deformed Haldane-Shastry model
- $\mathbf{q}=\mathbf{i}$ limit, Temperley-Lieb representation
- Conserved Hamiltonians, symmetries and spectrum
- Free fermions
- Outlook

The isotropic Haldane-Shastry Hamiltonian

[Haldane, 88; Shastry, 88]

- $\mathrm{N} \operatorname{su}(\mathbf{2})$ spins $\mathbf{1 / 2}$ on a circle with periodic boundary conditions

$$
z_{j} \longmapsto \omega^{j}=\mathrm{e}^{2 \pi \mathrm{i} j / N}
$$

$$
\begin{array}{l|}
\\
V\left(z_{i}, z_{j}\right)=\frac{z_{\mathrm{HS}}=-\sum_{i \neq j} V\left(z_{i}, z_{j}\right) P_{i j}}{\left(z_{i}-z_{j}\right)^{2}}=\frac{1}{\sin ^{2} \pi(i-j) / N}
\end{array} P_{j k}=\frac{1}{2}\left(\sigma_{j}^{a} \sigma_{k}^{a}+1\right) \quad \text { spin } \quad \text { permutation }
$$

also solvable for $\mathrm{su}(\mathrm{n})$ spins in fundamental representation

- Yangian symmetry and 2dCFT limit: [Haldane, Ha, Talstra, Bernard, Pasquier, 92] algebraic structure: [Bernard, Gaudin, Haldane, Pasquier, 93]
- Yangian and spinon description of $\operatorname{su}(2)_{\mathrm{k}=1}$ CFT:
[Bernard, Pasquier, D.S. 94;
Bouwknegt, Ludwig, Schoutens, 94]

The spectrum of the Haldane-Shastry Hamiltonian

[Haldane, Ha, Talstra, Bernard, Pasquier, 92]
[Bernard, Gaudin, Haldane, Pasquier, 93]

The model is Yangian symmetric (huge degeneracy) and the spectrum is encoded by motifs:

$$
\begin{aligned}
& E(\mu)-E_{0}=\sum_{m=1}^{M} \varepsilon\left(\mu_{m}\right)=\sum_{m=1}^{M} \mu_{m}\left(N-\mu_{m}\right)
\end{aligned}
$$

each motif corresponds to a Yangian representation
"Heisenberg model without bound states"
this structure of the spectrum will be conserved by the q-deformation we are considering

The q-Haldane-Shastry Hamiltonian (Uglov-Lamers)

[Bernard, Gaudin, Haldane, Pasquier, 93; Cherednik 92; Uglov 95; Lamers 18; Lamers, Pasquier, D.S., 22]

The XXZ model can also be deformed to accommodate for long-range interaction, at the price of introducing multi-spin interaction

$$
\begin{aligned}
& \widetilde{\mathrm{H}}^{\mathrm{L}}=\frac{[N]}{N} \sum_{i<j} V\left(z_{i}, z_{j}\right) S_{[i, j]}^{\mathrm{L}} \\
& V\left(z_{i}, z_{j}\right)=\frac{z_{i} z_{j}}{\left(\mathrm{q} z_{i}-\mathrm{q}^{-1} z_{j}\right)\left(\mathrm{q}^{-1} z_{i}-\mathrm{q} z_{j}\right)} \quad[N]:=\frac{\mathrm{q}^{N}-\mathrm{q}^{-N}}{\mathrm{q}-\mathrm{q}^{-1}} \\
& \begin{array}{ll}
u & v \\
\uparrow & \uparrow \\
u & v
\end{array}:=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \mathrm{q}^{-1} & -1 & 0 \\
0 & -1 & \mathrm{q} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=e_{i} \\
& \mathrm{q} \text {-antisymmetriser/TL generator } \\
& \text { [Lamers 18] } \\
& z_{j} \longmapsto \omega^{j}=\mathrm{e}^{2 \pi \mathrm{i} j / N} \\
& \check{\mathrm{R}}_{k, k+1}(u)=1-f(u) e_{k}, \quad f(u)=\frac{u-1}{\mathrm{q} u-\mathrm{q}^{-1}}
\end{aligned}
$$

The Uglov-Lamers Hamiltonians

Several new features compared to the case $\mathrm{q}=1$:

- the model is not translationally invariant (but there is a q-translation operator, G)

- there exists another Hamiltonian with the opposite "chirality"

$$
\widetilde{\mathrm{H}}^{\mathrm{L}}=\frac{[N]}{N} \sum_{i<j} V\left(z_{i}, z_{j}\right) S_{[i, j]}^{\mathrm{L}}
$$

$$
\left[\widetilde{\mathrm{H}}^{\mathrm{L}}, \widetilde{\mathrm{H}}^{\mathrm{R}}\right]=0
$$

$$
\left[G, \widetilde{\mathrm{H}}^{\mathrm{L} / \mathrm{R}}\right]=0
$$

The Uglov-Lamers Hamiltonians

$$
\begin{gathered}
\widetilde{\mathrm{H}}^{\mathrm{L}}=\frac{[N]}{N} \sum_{i<j} V\left(z_{i}, z_{j}\right) S_{[i, j]}^{\mathrm{L}} \\
{\left[\widetilde{\mathrm{H}}^{\mathrm{L}}, \widetilde{\mathrm{H}}^{\mathrm{R}}\right]=0}
\end{gathered}
$$

Both Hamiltonians can be diagonalised simultaneously and the spectrum can be written in terms of motifs, with eigenvalues (not real, for $|q|=1$)

$$
\begin{gathered}
\varepsilon^{\mathrm{L}, \mathrm{R}}(\mu)=\sum_{m=1}^{M} \varepsilon^{\mathrm{L}, \mathrm{R}}\left(\mu_{m}\right) \\
\varepsilon^{\mathrm{L}}(n)=\frac{1}{\mathrm{q}-\mathrm{q}^{-1}}\left(\mathrm{q}^{N-n}[n]-\frac{n}{N}[N]\right), \quad \varepsilon^{\mathrm{R}}(n)=\frac{-1}{\mathrm{q}-\mathrm{q}^{-1}}\left(\mathrm{q}^{n-N}[n]-\frac{n}{N}[N]\right) \\
\mathrm{H}=\frac{1}{2}\left(\widetilde{\mathrm{H}}^{\mathrm{L}}+\widetilde{\mathrm{H}}^{\mathrm{R}}\right) \quad \text { has real spectrum both for } \mathrm{q} \text { real and }|\mathrm{q}|=1 \\
\varepsilon(n)=\frac{1}{2}\left(\varepsilon^{\mathrm{L}}(n)+\varepsilon^{\mathrm{R}}(n)\right)=\frac{1}{2}[n][N-n]
\end{gathered}
$$

q-number generalisation of HS magnon dispersion relation

Temperley-Lieb algebra and the $q=i$ limit

- generators of the Temperley-Lieb algebra: $\quad e_{j}=-h_{[j, j+1]}-\frac{\mathrm{q}-\mathrm{q}^{-1}}{4}\left(\sigma_{j}^{z}-\sigma_{j+1}^{z}\right)$

$$
\begin{aligned}
& e_{j}^{2}=\left(\mathrm{q}+\mathrm{q}^{-1}\right) e_{j} \\
& e_{j} e_{j \pm 1} e_{j}=e_{j}, \\
& e_{j} e_{k}=e_{k} e_{j} \quad(\text { for } j \neq k, k \pm 1),
\end{aligned}
$$

- for particular boundary conditions, the open XXZ chain has $U_{q} s l(2)$ symmetry

$$
H_{\mathrm{XXZ}}^{\mathrm{open}}=\sum_{j=1}^{N-1} h_{[j, j+1]}+\frac{\mathrm{q}-\mathrm{q}^{-1}}{4}\left(\sigma_{1}^{z}-\sigma_{N}^{z}\right)=-\sum_{j=1}^{N-1} e_{j}
$$

[Pasquier, Saleur, 90]

- The qHS model is defined in terms of the XXZ R-matrix

$$
\check{\mathrm{R}}_{k, k+1}(u)=1-f(u) e_{k}, \quad f(u)=\frac{u-1}{\mathrm{q} u-\mathrm{q}^{-1}}
$$

at $\mathbf{q}=\mathbf{i}$ we have $e_{j}^{2}=0$ and $f\left(u^{-1}\right)=-f(u) \quad \longrightarrow \quad$ great simplification (free fermions)

The Uglov-Lamers model at $\mathbf{q}=\mathbf{i}$

- in this case the spin interaction can be written exclusively with in terms of nested commutators of the TL generators

$$
e_{[l, m+1]}:=\left[e_{l},\left[e_{l+1}, \ldots\left[e_{m-1}, e_{m}\right] \ldots\right]\right]=\left[\left[\ldots\left[e_{l}, e_{l+1}\right], \ldots e_{m-1}\right], e_{m}\right]
$$

Jacobi identity and TL algebra

- for example: $\mathrm{S}_{[i, i+2]}^{\mathrm{L}}=e_{[i, i+1]}-f^{2}(\omega) e_{[i+1, i+2]}+f(\omega) e_{[i, i+2]}$, $e_{[k, k+1]} \equiv e_{k}$

$$
\begin{aligned}
\mathrm{S}_{[i, i+3]}^{\mathrm{L}} & =e_{[i, i+1]}-f^{2}\left(\omega^{2}\right) e_{[i+1, i+2]}+f^{2}\left(\omega^{2}\right) f^{2}(\omega) e_{[i+2, i+3]} \\
& +f\left(\omega^{2}\right) e_{[i, i+2]}-f^{2}\left(\omega^{2}\right) f(\omega) e_{[i+1, i+3]}+f\left(\omega^{2}\right) f(\omega) e_{[i, i+3]}
\end{aligned}
$$

and in general: $\quad \mathrm{S}_{[j, j+k]}^{\mathrm{L}}=\sum_{l=0}^{k-1} \sum_{m=1}^{k-l}(-1)^{l} \prod_{i=1}^{l} f^{2}\left(\omega^{k-i}\right) \prod_{n=1}^{m-1} f\left(\omega^{k-l-n}\right) e_{[j+l, j+l+m]}$

$$
\mathrm{S}_{[j, j+k]}^{\mathrm{R}}=\sum_{l=0}^{k-1} \sum_{m=1}^{k-l}(-1)^{l+m-1} \prod_{i=1}^{l} f^{2}\left(\omega^{k-i}\right) \prod_{n=1}^{m-1} f\left(\omega^{k-l-n}\right) e_{[j+k-l-m, j+k-l]}
$$

The Uglov-Lamers model at $\mathbf{q}=\mathrm{i}$

There are several subtleties in defining the Hamiltonian at $\mathbf{q}=\mathbf{i}$:

$$
\begin{array}{cc}
\text { since } & {[2 k]=0 \quad \text { and }}
\end{array}[2 k+1]=(-1)^{k} 1 \quad \varepsilon(n)=\frac{1}{2}[n][N-n]=0 \quad \text { at } \quad N=2 L+1: \quad \text { the total energy is identically zero } \quad \begin{array}{ll}
\text { aut } \quad \varepsilon^{\mathrm{L}}(n)=-\varepsilon^{\mathrm{R}}(n)= \begin{cases}-n, & n=2 k \\
N-n, & n=2 k+1\end{cases}
\end{array}
$$

the total Hamiltonian is also zero for odd number of sites:

$$
\begin{aligned}
& \mathrm{H}=\sum_{1 \leq p \leq q<N}\left(h_{p, q}^{\mathrm{L}}+h_{p, q}^{\mathrm{R}}\right) e_{[p, q+1]} \\
& h_{p, q}^{\mathrm{L}}=-h_{p, q}^{\mathrm{R}}, \quad 1 \leq p \leq q<N \\
& \mathrm{H}=\frac{1}{2}\left(\widetilde{\mathrm{H}}^{\mathrm{L}}+\widetilde{\mathrm{H}}^{\mathrm{R}}\right) \\
& \text { explicit but tedious expressions/proof } \\
& h_{p, q}^{\mathrm{L}}=\sum_{k=1}^{N-q}\left(t_{q-p, 0}(k)-(-1)^{p} t_{q-p, p}(k)\right) \\
& \text { with } \quad t_{p, q}(n)=\prod_{i=0}^{p-1} \tan \frac{\pi(n+i)}{N} \prod_{j=p}^{p+q-1} \tan ^{2} \frac{\pi(n+j)}{N}
\end{aligned}
$$

The Uglov-Lamers model at $\mathbf{q}=\mathrm{i}$

One can get a non vanishing non-chiral Hamiltonian by expanding to the next order in $\mathrm{q}+\mathrm{q}^{-1}$

$$
\begin{gathered}
\widetilde{\mathrm{H}}:=\lim _{\mathrm{q} \rightarrow i} \frac{\mathrm{H}}{\mathrm{q}+\mathrm{q}^{-1}} \\
{\left[\widetilde{\mathrm{H}}, \widetilde{\mathrm{H}}^{\mathrm{R}}\right]=-\left[\widetilde{\mathrm{H}}, \widetilde{\mathrm{H}}^{\mathrm{L}}\right]=0}
\end{gathered}
$$

- the eigenstates of the chiral and the rescaled Hamiltonians are the same
- the equivalent of the highest weight vectors can be constructed using a similar procedure to Haldane-Shastry
result for the one-magnon dispersion relation:

$$
\tilde{\varepsilon}(n)=\lim _{q \rightarrow i} \frac{\varepsilon(n)}{\mathrm{q}^{+\mathrm{q}^{-1}}}=(-1)^{L-1} \begin{cases}\frac{n}{2}, & n=2 k \\ \frac{N-n}{2}, & n=2 k+1\end{cases}
$$

Th Uglov-Lamers model at $\mathbf{q}=\mathbf{i}$

Explicit expression for H ?
$N=5$

$$
\begin{aligned}
& \text { P9] }= \frac{1}{4}(-5-\sqrt{5}) e_{1} \cdot e_{2}+(2+\sqrt{5}) e_{1} \cdot e_{3}+\frac{1}{2}(-5-\sqrt{5}) e_{1} \cdot e_{4}+\frac{1}{4}(-5-\sqrt{5}) e_{2} \cdot e_{1}+\frac{1}{2}(2+\sqrt{5}) e_{2} \cdot e_{3}+(2+\sqrt{5}) e_{2} \cdot e_{4}+ \\
& \frac{1}{2}(2+\sqrt{5}) e_{3} \cdot e_{2}+\frac{1}{4}(-5-\sqrt{5}) e_{3} \cdot e_{4}+\frac{1}{4}(-5-\sqrt{5}) e_{4} \cdot e_{3}-\frac{1}{2} \sqrt{5+2 \sqrt{5}} e_{1} \cdot e_{2} \cdot e_{3}-\sqrt{5+2 \sqrt{5}} e_{1} \cdot e_{2} \cdot e_{4}+ \\
& \frac{1}{2} \sqrt{5+2 \sqrt{5}} e_{1} \cdot e_{3} \cdot e_{2}+\sqrt{5+2 \sqrt{5}} e_{1} \cdot e_{3} \cdot e_{4}-\sqrt{5+2 \sqrt{5}} e_{1} \cdot e_{4} \cdot e_{3}-\frac{1}{2} \sqrt{5+2 \sqrt{5}} e_{2} \cdot e_{1} \cdot e_{3}+\sqrt{5+2 \sqrt{5}} e_{2} \cdot e_{1} \cdot e_{4}+1 \\
& \frac{1}{2} \sqrt{5+2 \sqrt{5}} e_{2} \cdot e_{3} \cdot e_{4}+\frac{1}{2} \sqrt{5+2 \sqrt{5}} e_{2} \cdot e_{4} \cdot e_{3}+\frac{1}{2} \sqrt{5+2 \sqrt{5}} e_{3} \cdot e_{2} \cdot e_{1}-\frac{1}{2} \sqrt{5+2 \sqrt{5}} e_{3} \cdot e_{2} \cdot e_{4}-\frac{1}{2} \sqrt{5+2 \sqrt{5}} e_{4} \cdot e_{3} \cdot e_{2}+ \\
& \\
& \frac{1}{4}(3-\sqrt{5}) e_{1} \cdot e_{2} \cdot e_{3} \cdot e_{4}+\frac{1}{4}(-1-\sqrt{5}) e_{1} \cdot e_{2} \cdot e_{4} \cdot e_{3}+\frac{1}{4}(-1+3 \sqrt{5}) e_{1} \cdot e_{3} \cdot e_{2} \cdot e_{4}+\frac{1}{4}(-1-\sqrt{5}) e_{1} \cdot e_{4} \cdot e_{3} \cdot e_{2}+ \\
& \frac{1}{4}(-1-\sqrt{5}) e_{2} \cdot e_{1} \cdot e_{3} \cdot e_{4}+\frac{1}{4}(-1+3 \sqrt{5}) e_{2} \cdot e_{1} \cdot e_{4} \cdot e_{3}+\frac{1}{4}(-1-\sqrt{5}) e_{3} \cdot e_{2} \cdot e_{1} \cdot e_{4}+\frac{1}{4}(3-\sqrt{5}) e_{4} \cdot e_{3} \cdot e_{2} \cdot e_{1}
\end{aligned}
$$

$$
\widetilde{\mathrm{H}}=\sum_{k \leq l<m \leq n} h_{k, l ; m, n}\left\{e_{[k, l+1]}, e_{[m, n+1]}\right\}
$$

explicit coefficients
anti-commutators of nested commutators of TL generators

Non-unitary fermions

- The Temperley-Lieb generators at $\mathrm{q}=\mathrm{i}$ are expressible in terms of non-unitary fermions

$$
\left\{f_{j}^{+}, f_{k}\right\}=(-1)^{j} \delta_{j k} \quad[\text { Gainutdinov, Read, Saleur, 11] }
$$

- Compare with Jordan-Wigner fermions: $\quad f_{j}^{+}=(-i)^{j} c_{j}^{+}, \quad f_{j}=(-i)^{j} c_{j}$
- Convenient variables: two-site operators

$$
g_{j}=f_{j}+f_{j+1}, \quad g_{j}^{+}=f_{j}^{+}+f_{j+1}^{+}
$$

then: $\quad e_{j}=g_{j}^{+} g_{j}$

$$
e_{[j, j+m+1]} \equiv\left[\left[\cdots\left[e_{j}, e_{j+1}\right], \cdots\right], e_{j+m+1}\right]=(-1)^{(m-1) j+m(m-1) / 2}\left(g_{j+m}^{+} g_{j}+(-1)^{m} g_{j}^{+} g_{j+m}\right)
$$

quadratic in fermions $\rightarrow \widetilde{\mathrm{H}}^{\mathrm{L}}$
$\left\{e_{[k, l+1]}, e_{[m, n+1]}\right\} \quad$ quartic in fermions $\longrightarrow \tilde{\mathrm{H}}$

- However $\widetilde{\mathrm{H}}^{\mathrm{L}}$ not diagonalisable by Fourier transform (absence of translational invariance)!
\longrightarrow the excitations are fermions dressed with some statistical interaction (fermionic magnons)

Fermions and wave functions

$\widetilde{\mathrm{H}}^{\mathrm{L}}$ quadratic in fermions

However $\widetilde{\mathrm{H}}^{\mathrm{L}}$ not diagonalisable by Fourier transform (absence of translational invariance)
\longrightarrow the excitations are fermions dressed with some statistical interaction (fermionic magnons)

$$
\begin{gathered}
\Psi_{k}^{+} \equiv G^{1-k} f_{1}^{+} G^{k-1} \propto f_{k}^{+}+\text {lower } \\
|\{n\}\rangle=\sum_{k=1}^{N} \omega^{n k} \Psi_{k}^{+}|0\rangle
\end{gathered}
$$

one-magnon state:
$\begin{gathered}\text { two-magnon highest weight state: } \\ \text { (conjecture) }\end{gathered} \quad\left|\left\{n_{1}, n_{2}\right\}\right\rangle=\sum_{k_{1}<k_{2}}^{N} P_{n_{1}, n_{2}}\left(\omega^{k_{1}}, \omega^{k_{2}}\right) \Psi_{k_{2}}^{+} \Psi_{k_{1}}^{+}|0\rangle$

$$
\left|\left\{n_{1}, n_{2}\right\}\right\rangle=\sum_{k_{1}<k_{2}}^{N} P_{n_{1}, n_{2}}\left(\omega^{k_{1}}, \omega^{k_{2}}\right) \Psi_{k_{2}}^{+} \Psi_{k_{1}}^{+}|0\rangle
$$

NB: exact expression for the highest weight eigenvectors in the spin language
[Lamers, Pasquier, D.S., 22]
expression of the Hamiltonians in terms of Ψ_{k}^{+}?

Even number of sites

The second subtlety appears at \boldsymbol{N} even $N=2 L$
in this case the dispersion relation is regular (non-vanishing), but there are divergences (double poles) in the matrix elements of the Hamiltonians, since:

$$
\mathrm{V}_{j, j+L}=\frac{1}{\left(\mathrm{q}+\mathrm{q}^{-1}\right)^{2}} \quad f\left(\omega^{L}\right)=f(-1)=\frac{2}{\mathrm{q}+\mathrm{q}^{-1}}
$$

One of the poles is removed by the factor [N] in the Hamiltonian, but the second has to be removed "by hand" by multiplication with $q+q^{-1}$

Result: a Hamiltonian with finite matrix elements but with identically zero eigenvalues!

Example: for $N=2$

$$
2 \mathrm{H}=\frac{1}{\mathrm{q}+\mathrm{q}^{-1}} e_{1}
$$

is a projector with eigenvalues $0^{\wedge} 3,1$
after rescaling,

$$
2 \mathrm{H}\left(\mathrm{q}+\mathrm{q}^{-1}\right)=e_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \mathrm{q}^{-1} & -1 & 0 \\
0 & -1 & \mathrm{q} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \longrightarrow \text { Jordan block at } \mathrm{q}=\mathrm{i}
$$

Symmetry

Algebraic origin of the Jordan blocks at N even: $\mathbf{g l (1 | 1)}$ symmetry
at each site we have a $\mathrm{gl}(1 \mid 1)$ representation with alternating central charge E_{j}
[Gainutdinov, Read, Saleur, 11]

$$
\begin{gathered}
\left\{f_{j}^{+}, f_{j}\right\}=(-1)^{j} \equiv E_{j}, \quad N_{j}=(-1)^{j} f_{j}^{+} f_{j} \\
{\left[\mathrm{~N}_{j}, f_{j}\right]=-f_{j}, \quad\left[\mathrm{~N}_{j}, f_{j}^{+}\right]=f_{j}^{+}}
\end{gathered}
$$

global generators: $\quad F_{1}^{+}=\sum_{j=1}^{N} f_{j}^{+}, \quad F_{1}=\sum_{j=1}^{N} f_{j}, \quad \mathrm{~N}=\sum_{j=1}^{N}(-1)^{j} f_{j}^{+} f_{j}-L, \quad E=\sum_{j=1}^{N} E_{j}$
central element

Jordan blocks \longleftarrow indecomposable representations of gl(1|1), at $\mathrm{E}=0$

Experimentally, at larger lengths $\mathrm{N}=2 \mathrm{~L}$, the largest Jordan cell has size $\mathrm{L}+1$

Conclusions and open questions

- New fermionic long-range integrable model with extended (super)symmetry
- The odd and even lengths have very different properties (linear dispersion relation vs. Jordan blocks)
- Closed form expressions for the (regularised) matrix elements
- Wave functions in the fermionic representation
- Even length chain and interpretation of the Jordan block structure
- Extended symmetry of the model in the limit q=i
- Relation with non-unitary CFTs
- Other roots of unity: $q^{\wedge} 3=1$ and $c=0$ CFT; $g l(2 \mid 1)$ symmetry

