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Introduction

StatMech of quantum chains

Quantum (spin) chains(
Cd
)⊗L space of states

XJj,kK = id⊗(j−1)⊗X ⊗ id⊗(L−k), X ∈ End
(
Cd
)⊗(k−j+1) local operator

HL(c) = ∑
L
j=1 hJj,j+r−1K(c) ∈ End

(
Cd
)⊗L Hamiltonian

Integrable anthropology

lattice model ↔ quantum field theory

QStatMech: response of a large quantum system to time-(= t)-dependent
perturbations (= experiments) described by dynamical correlation functions at finite
temperature T

〈
XJ1,`K(t)YJ1+m,r+mK

〉
T = lim

L→∞

tr1,...,L

{
e(it−1/T )HL XJ1,`K e−itHL YJ1+m,r+mK

}
tr1,...,L

{
e−HL/T

}

Frank Göhmann and Karol K. Kozlowski Space-like XXZ at finite T 11.10.2023 3 / 18



Introduction

StatMech of quantum chains

Quantum (spin) chains(
Cd
)⊗L space of states

XJj,kK = id⊗(j−1)⊗X ⊗ id⊗(L−k), X ∈ End
(
Cd
)⊗(k−j+1) local operator

HL(c) = ∑
L
j=1 hJj,j+r−1K(c) ∈ End

(
Cd
)⊗L Hamiltonian

Integrable anthropology

lattice model ↔ quantum field theory

QStatMech: response of a large quantum system to time-(= t)-dependent
perturbations (= experiments) described by dynamical correlation functions at finite
temperature T

〈
XJ1,`K(t)YJ1+m,r+mK

〉
T = lim

L→∞

tr1,...,L

{
e(it−1/T )HL XJ1,`K e−itHL YJ1+m,r+mK

}
tr1,...,L

{
e−HL/T

}
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Introduction

Prime example of an integrable spin chain Hamiltonian

The XXZ model

HL(∆) = J
L

∑
j=1

{
σ

x
j−1σ

x
j + σ

y
j−1σ

y
j + ∆σ

z
j−1σ

z
j
}
− h

2

L

∑
j=1

σ
z
j

J > 0, h ∈ R, ∆ = ch(η) ∈ R

The big To Do: Calculate

〈σz
1σ

z
m+1(t)〉T , 〈σ−1 σ

+
m+1(t)〉T , . . .

explicitly for all values of m, t , T and h!

State of the art: Finite temperature dynamical correlation functions of Yang-Baxter
integrable lattice models are largely unknown. Partial exception: the XX model,
HXX = HL(0)

Longitudinal two-point functions of the XX model [NIEMEIJER 67, GKKKS 17]

〈σz
1σ

z
m+1(t)〉T −〈σz

1〉2 =

[∫
π

−π

dp
π

ei(mp−tε(p))

1 + eε(p)/T

][∫
π

−π

dp
π

e−i(mp−tε(p))

1 + e−ε(p)/T

]
where ε(p) = h−4J cos(p)
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Frank Göhmann and Karol K. Kozlowski Space-like XXZ at finite T 11.10.2023 4 / 18



Introduction

Prime example of an integrable spin chain Hamiltonian

The XXZ model

HL(∆) = J
L

∑
j=1

{
σ

x
j−1σ

x
j + σ

y
j−1σ

y
j + ∆σ

z
j−1σ

z
j
}
− h

2

L

∑
j=1

σ
z
j

J > 0, h ∈ R, ∆ = ch(η) ∈ R

The big To Do: Calculate

〈σz
1σ

z
m+1(t)〉T , 〈σ−1 σ

+
m+1(t)〉T , . . .

explicitly for all values of m, t , T and h!

State of the art: Finite temperature dynamical correlation functions of Yang-Baxter
integrable lattice models are largely unknown. Partial exception: the XX model,
HXX = HL(0)

Longitudinal two-point functions of the XX model [NIEMEIJER 67, GKKKS 17]

〈σz
1σ

z
m+1(t)〉T −〈σz

1〉2 =

[∫
π

−π

dp
π

ei(mp−tε(p))

1 + eε(p)/T

][∫
π

−π

dp
π

e−i(mp−tε(p))

1 + e−ε(p)/T

]
where ε(p) = h−4J cos(p)
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Introduction

Longitudinal correlation functions of the XX model

This simple expression can be analyzed numerically and asymptotically by means
of the saddle point method

0 5 10 15 20 25 30 35

0

5 · 10−2

0.1

0.15

t

R
e
C
(1
2,
t|1

,0
.2
)

timelike
spacelike

Real part of the connected longitudinal two-point function of the XX chain at m = 12,
T = 1, h = 0.2 and J = 1/4 as a function of time
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Frank Göhmann and Karol K. Kozlowski Space-like XXZ at finite T 11.10.2023 5 / 18



Thermal form factor series

Lattice path integral representation of dynamical two-point functions

ehφ̂/T

1 m+ 1 m+ r L− 1 L

− it
κN

it
κN

− it
κN

it
κN

x(1)

x(ℓ)

ξ1

.

..

ξℓ

...

0

0

y(1) y(r)

( 1
T

− it) 1
κN

(it− 1
T
) 1
κN

( 1
T

− it) 1
κN

(it− 1
T
) 1
κN

ℓ

N

N

...

...

...

...

· · ·

...

...

...

...

· · ·

...

...

...

...

· · ·
T(ℓ)(0|h)

}
∼ e2it H/N

Unnormalized finite Trotter number approximant to the dynamical two-point function, 1/κ ‘en-
ergy scale’. t(`)(λ|h) = tr T(`)(λ|h) ‘dynamical quantum transfer matrix’ [SAKAI 07]
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Thermal form factor series

A thermal form factor series for dynamical correlation functions

Expanding (a normalized version of) the above lattice lattice path integral in a basis
of eigenstates |Ψk (h)〉 of the dynamical quantum transfer matrix we obtain a
‘thermal form factor expansion’ of the dynamical two-point functions [GKKKS 17,
GKM 23]

It contains two kinds of objects

The thermal form factors

F (−)
k (X) =

〈Ψ0(h)|∏y
k∈J1,`K tr0{x(k)0 T (0|h)}|Ψk (h)〉
〈Ψ0(h)|Ψ0(h)〉Λ`

k (0|h)

F (+)
k (Y ) =

〈Ψk (h)|∏y
k∈J1,rK tr0{y(k)0 T (0|h)}|Ψ0(h)〉
〈Ψk (h)|Ψk (h)〉Λr

0(0|h)

that can be characterized by discrete rqKZ [AK 11], by their connection to the
Fermionic basis [BJMST 08, JMS 09, BJMS 10], or multiple integrals [BG 09]

Ratios of eigenvalues Λk (λ|h) of the dynamical QTM

ρk (λ) =
Λk (λ|h)

Λ0(λ|h)
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Thermal form factor series

A thermal form factor series for dynamical correlation functions

With the above notation the thermal form factor series is

〈
XJ1,`K(t)YJ1+m,r+mK

〉
T = e−ihts(X) lim

N→∞
∑
k

AXY
k ρk (0)m

(
ρk (−it

κN )

ρk ( it
κN )

) N
2

(TFFS)

where AXY
k = F (−)

k (X)F (+)
k (Y ) and s(X) is the U(1) charge of X

The eigenvalues of the quantum transfer matrix are generically non-real and, in
the Trotter limit N→ ∞ stabilize to a sequence that converges to zero.
Eigenvalues ratios ρk (0) are real or come in complex conjugate pairs. They can
be ordered such that |ρk (0)| is a monotonically decreasing sequence that
converges to zero

For large N the first term in the series takes the form

In general, all terms in (TFFS) contribute to the large m, t asymptotics, and we
have to take the limit N→ ∞ first

Still, we may ask: When does (∗) give the the leading term for large m, t?
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Frank Göhmann and Karol K. Kozlowski Space-like XXZ at finite T 11.10.2023 8 / 18



Thermal form factor series

A thermal form factor series for dynamical correlation functions

With the above notation the thermal form factor series is

〈
XJ1,`K(t)YJ1+m,r+mK

〉
T = e−ihts(X) lim

N→∞
∑
k

AXY
k ρk (0)m

(
ρk (−it

κN )

ρk ( it
κN )

) N
2

(TFFS)

where AXY
k = F (−)

k (X)F (+)
k (Y ) and s(X) is the U(1) charge of X

The eigenvalues of the quantum transfer matrix are generically non-real and, in
the Trotter limit N→ ∞ stabilize to a sequence that converges to zero.
Eigenvalues ratios ρk (0) are real or come in complex conjugate pairs. They can
be ordered such that |ρk (0)| is a monotonically decreasing sequence that
converges to zero

For large N the first term in the series takes the form

AXY
1 exp

{
−ihts(X) + ln(ρ1(0))m− ρ′1(0)

ρ1(0)
· it

κ

}
(∗)

In general, all terms in (TFFS) contribute to the large m, t asymptotics, and we
have to take the limit N→ ∞ first

Still, we may ask: When does (∗) give the the leading term for large m, t?
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Thermal form factor series

Trotter limit N→ ∞

The above is valid for all fundamental Yang-Baxter integrable models. For the
evaluation of the series in the Trotter limit we need

1 access to the full spectrum of the dynamical quantum transfer matrix
2 to be able to efficiently calculate matrix elements

This restricts us for the moment to models related to the six-vertex model

Spectral analysis

aN(λ|{λp,λh}) =
dN(λ)

aN(λ)

Q(λ + η|{λp,λh})
Q(λ−η|{λp,λh})

lnaN(λ|{λp,λh}) =−wN(λ)

T
+ Φ(λ|{λp,λh})− [K̂C ln(1 +aN(·|{λp,λh}))](λ)

aN(λ
p/h
j |{λp,λh}) =−1

N→ ∞: wN → ε0(λ) independent of t ⇒ aN → a independent of t

Summation of the TFFS: Put λp/h in off-shell position, use multiple-residue
calculus with off-shell version of a for summation
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This restricts us for the moment to models related to the six-vertex model

Spectral analysis

aN(λ|{λp,λh}) =
dN(λ)

aN(λ)

Q(λ + η|{λp,λh})
Q(λ−η|{λp,λh})

lnaN(λ|{λp,λh}) =−wN(λ)

T
+ Φ(λ|{λp,λh})− [K̂C ln(1 +aN(·|{λp,λh}))](λ)

aN(λ
p/h
j |{λp,λh}) =−1

N→ ∞: wN → ε0(λ) independent of t ⇒ aN → a independent of t

Summation of the TFFS: Put λp/h in off-shell position, use multiple-residue
calculus with off-shell version of a for summation
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XX transversal case

Functions characterizing XX, ∆ = 0

∆ = 0 ⇒ K̂C = 0,Φ = 0 and in the Trotter limit

aN(λ|{λp,λh}) = (−1)s e−
h
T

N

∏
j=1

ei
(

p(λ−ν2j−1)−p(λ−ν2j )
)
→ (−1)s e−

ε(λ)
T

where s = nh−np , and p and ε are one-particle momentum and energy

p(λ) =−i ln
(
−ith(λ)

)
, ε(λ) = h + 2Jp′(λ)

These functions live in the fundamental strip S =
{

λ ∈ C
∣∣− π

4 ≤ Imλ < 3π

4

}
, where

the one-particle energy ε has precisely two roots λ
±
F , the Fermi rapidities.

pF = p(λ
−
F ) = arccos(h/4J) is the called the Fermi momentum

The eigenvalue ratios take the form

ρ(λ|{λp,λh}) =

(−1)s exp

{
i

nh

∑
k=1

p(λ
h
k−λ)−i

np

∑
k=1

p(λ
p
k−λ)+

∫
Ch

dµ
2π

p′(µ−λ) ln

(
1 + (−1)s e−

ε(µ)
T

1 + e−
ε(µ)

T

)}
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XX transversal case

Contours for XX

λ

iπ
4

− iπ
4

0

Cp

Ch

iπ
2

λ+
F

λ−
F

i3π
4

Particle and hole contours Cp and Ch
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XX transversal case

Functions occurring in the TFFS for XX

An auxiliary function

z(λ) =
1

2πi
ln

{
cth

(
ε(λ)

2T

)}
For all x ∈ S\Ch/p two functions

Φh/p(x) =
ip′(x)

2
exp

{
±i

∫
Ch/p

dλ p′(λ)z(λ)
sh(x + λ)

sh(x−λ)

}

An amplitude

A(T ,h) = exp

{
−
∫
C′h⊂Ch

dλ z(λ)
∫
Ch

dµ z(µ)cth′(λ−µ)

}
Square of a generalized Cauchy determinant

D
(
{xj}nh

j=1,{yk}np
k=1

)
=

[
∏1≤j<k≤nh

sh2(xj − xk )
][

∏1≤j<k≤np
sh2(yj − yk )

]
∏

nh
j=1 ∏

np
k=1 sh2(xj − yk )
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XX transversal case

TFFS for the transverse dynamical two-point function of the XX chain

THEOREM: [GKKKS 17] The transverse dynamical two-point function of the XX
chain has the series representation

〈σ−1 σ
+
m+1(t)〉T = (−1)mF(m)

∞

∑
n=1

(−1)n

n!(n−1)!

n

∏
j=1

∫
Ch

dxj

πi
Φp(xj )ei(mp(xj )−tε(xj ))

1− eε(xj )/T

×
n−1

∏
k=1

∫
Cp

dyk

πi
e−i(mp(yk )−tε(yk ))

Φh(yk )
(
1− e−ε(yk )/T

) D({xj}n
j=1,{yk}n−1

k=1

)
where

F(m) = e−impF A(T ,h)exp

{
−m

∫
Ch

dλ

2π
p′(λ) ln

∣∣∣∣cth

(
ε(λ)

2T

)∣∣∣∣}

This is now a series over classes of excitations, just a function to be further studied

We claim that the series is manifestly different from the series obtained by [IIKS 93]
and rather appropriate for numerical and asymptotic analysis
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Frank Göhmann and Karol K. Kozlowski Space-like XXZ at finite T 11.10.2023 13 / 18



Late-time large-distance asymptotics

Spacelike asymptotics for fixed T

THEOREM: [GKS 19] In the spacelike regime m > 4Jt our TFFS for the transversal
two-point function is absolutely convergent and determines the late-time
long-distance asymptotics

t →+∞ , m→+∞ at any fixed ratio α =
m

4Jt
> 1

of the transverse dynamical correlation function of the XX chain explicitly

〈σ−1 σ
+
m+1(t)〉T = C(T ,h)(−1)m exp

{
−m

∫
Ch

dλ

2π
p′(λ) ln

∣∣∣∣cth

(
ε(λ)

2T

)∣∣∣∣}
×
(
1 +O(t−∞)

)
where

C(T ,h) =
2TA(T ,h)Φp(λ

−
F )

ε′(λ
−
F )

MAIN POINT: This is obtained (including the constant C(T ,h)) directly from the
series of multiple integrals by straightforward contour deformations. Such technique
should also work in the general XXZ case
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Late-time large-distance asymptotics

Interpretation and low-T behaviour

Note that the Trotter limit of the first term

Aσ−σ+

1 × exp

{
−iht + ln(ρ1(0))m +

ρ′1(0)

ρ1(0)
· it

κ

}
of the TFFS gives the same result!

So this expression could generally determine the spacelike asymptotics

Further note that we have the low-T asymptotic behaviour

− m
2π

∫
π

−π

dp ln

∣∣∣∣cth

(
ε(p)

2T

)∣∣∣∣∼−mπT
2vF

(∗)

where vF = 4J sin(pF ) is the Fermi velocity→ c.f. Karol’s presentation

(∗) proliferates into the timelike regime and changes at
αmin = sin(pF ) ⇔ m/t = vF ,
while at high temperature αmin = 4J, the band width
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Late-time large-distance asymptotics

Comparison with numerical result for the full series

100 150 200 250 300

0

0.5

1

1.5

2

2.5
·10−3

m

ℜe
⟨σ

− 1
(0
)σ

+ m
+
1
(t
)⟩

h/J = 0.1, T/J = 0.1, Jt = 10

Fredholm Det formula
asymptotic formula

Real part of 〈σ−1 (0)σ
+
m+1(t)〉 with T/J = 0.1,h/J = 0.1,Jt = 10 and m = 100∼ 300 eval-

uated numerically (dots) and from asymptotic formula
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Fredholm determinant representation

TFFS is different: a Fredholm determinant representation

THEOREM: [GKSS 19] The transversal correlation functions of the XX chain admit a
Fredholm determinant representation of the form

〈σ−1 σ
+
m+1(t)〉T = (−1)mF(m)Ω(m, t)det

Cp

(
id+V̂ − P̂

)
where V̂ is an integrable integral operator and P is a one-dimensional projector

Comparing with the asymptotic behaviour of the correlation function in the spacelike
regime m > 4Jt we see that

det
Cp

(
id+V̂ − P̂

)
∼ 1 +O(t−∞)

Fredholm determinant collects the higher-order corrections to the main asymptotics

[IIKS 93] obtained a different Fredholm determinant representation

〈σ−1 σ
+
m+1(t)〉T = (−1)m[det

C

(
id+Ŵ + Q̂

)
−det

C

(
id+Ŵ

)]
where Ŵ is an integrable operator and Q a 1d projector

We interpret our Fred-det-rep as a ‘resummation’ a la Borodin-Okounkov that is
more suitable for the long-time, large-distance asymptotic analysis
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Fredholm determinant representation

Hight-T analysis by means of matrix Riemann-Hilbert problem

THEOREM: [GKS 20] In the high-T limit the transverse dynamical correlation
function of the XX-chain behaves as

〈
σ
−
1 σ

+
m+1(t)

〉
T =

1
2

(
− J

T

)m

exp

{
icτ− τ2

4
+

∫
τ

0
dτ
′ um(τ

′)
}

× Qm+1(−i)P′m(−i)−Pm(−i)Q′m+1(−i)(
Qm+1(−i)P′m(−i)−Pm(−i)Q′m+1(−i)

)∣∣
τ=0

(
1 +O(T−2)

)
where τ =−4J

(
t− i

2T

)
, c = h

4J

um(τ) =
i
2

[
c(m−1)

m − γm
{

Fm(0)(Pm(0)−Q′m+1(0)) + Gm+1(0)P′m(0)
}]

and were Pm and Qm+1 are polynomials with time-dependent coefficients
obeying fully explicit linear equations

COROLLARY: (Generalizing [BJ 77]) In the high-T limit the transverse
auto-correlation function of the XX-chain behaves as

〈σ−1 σ
+
1 (t)〉T =

1
2

e−ih(t−i/(2T ))−4J2(t−i/(2T ))2(
1 +O(T−2)

)
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