INTEGRABLE SYSTEMS AND FIELD THEORY

65-th Birthday of Fedor Smirnov
11-13 oct. 2023 Paris (France)

Spectral properties of planar CFT's in $\mathbf{D}>2$: from N=4 SYM to Fishnet CFT

Vladimir Kazakov

A bit of history...

- I met Fedya many years ago in Russia, but we started our scientific discussions (and became friends) only in Paris, in the 90s
- I learned a lot from from him on quantum and classical integrability (in which I was a beginner at the time...)
- Somewhen around 2003, he explained me the finite gap method on the example of his work on KdV field theory. It was crucial for my contribution to one of the decisive works towards complete solution of spectral problem of planar $\mathfrak{P}=4$ SYM

Plan of the talk

Gromov, V.K., Leurent, Volin '13, '14 V.K., Leurent, Volin '15

- Quantum Spectral Curve (QSC) for planar spectrum of anomalous dimensions in $\mathscr{X}=4$ SYM
- Fishnet CFT as a weak coupling of strongly γ-deformed $\mathscr{P}=4$ SYM

Gurdogan, V.K., '15

- Generalized "Loom" Fishnet CFT: construction, examples, Yangian symmetry

Integrability of planar $\mathcal{N}=4$ SYM

$\mathscr{N}=4$ SYM: planar integrability from AdS/CFT duality

operators

$\mathcal{O}(x)=\operatorname{Tr}[\mathcal{D} \mathcal{D} \Psi \Psi \Phi \Phi \mathcal{D} \Psi \ldots](x)$

Anomalous dimensions $\Delta_{\mathcal{O}}$

$$
\mathcal{O}(\xi x) \rightarrow \xi^{\Delta_{\mathcal{O}}(\lambda)} \mathcal{O}(x)
$$

Operator product expansion,

$$
\mathcal{O}_{i}(x) \mathcal{O}_{j}(0)=\sum_{k}|x|^{-\Delta_{i}-\Delta_{j}+\Delta_{k}} C_{i, j}^{k} \mathcal{O}_{k}(0)+\ldots
$$

structure constants, correlators, amplitudes...

1- and 2-loop integrability
Classical integrability
S-matrix, asymptotic Bethe ansatz

Bena, Roiban, Polchinski 02'
Metsaev-Tseytlin 02'
Minahan, Zarembo 03'
Beisert, Kristjansen, Staudacher 03'
V.K.,Marshakov, Minahan, Zarembo 04'

Beisert, V.K.,Sakai, Zarembo 05'

Beisert,Staudacher 04
Beisert 05'
Janik 05'
Beisert, Eden, Staudacher '06

Gromov, V.K,, Vieira '09

Quantum Spectral Curve of $\mathscr{N}=4$ SYM: algebraic structure

Gromov, V.K., Leurent, Volin '13,'14 V.K., Leurent, Volin '15

- QSC eqs. close on finite set of Baxter functions of spectral parameter $Q_{I}(u)$
- $\mathrm{gl}(\mathrm{n})$: each Q placed at an edge of Hasse diagram - n -hypercube

$$
\text { for } \mathcal{N}=4 \text { SYM }
$$

- Plücker QQ-relations on each face ("determinant flow"):

$$
\stackrel{/}{-Q_{A}-\cdots-Q_{C}-\Leftrightarrow} Q_{B}(u) Q_{D}(u)=\left|\begin{array}{ll}
Q_{A}\left(u+\frac{i}{2}\right) & Q_{C}\left(u+\frac{i}{2}\right) \\
Q_{A}\left(u-\frac{i}{2}\right) & Q_{C}\left(u-\frac{i}{2}\right)
\end{array}\right|
$$

Grassmanian structure!
Krichever, Lupan, Wiegmann, Zabrodin, '94 Tsuboi '13

- $\mathrm{gl}(\mathrm{N})$ Heisenberg spin chain: $\quad Q_{0}=1, \quad Q_{j}=\operatorname{Polynomial}(u), \quad Q_{1,2, \ldots, N} \sim u^{\text {Length }}$
- $\mathrm{gl}(\mathrm{M} \mid \mathrm{K})$ Heisenberg spin chain: $\quad Q_{12 \ldots M}=1, \quad Q_{\text {neighbors } 12 \ldots M}=\operatorname{Polyn}(u) \quad Q_{M+1, M+2, \ldots K} \sim u^{\text {Length }}$

Quantum Spectral Curve of AdS_{5} / $^{-\mathrm{CFT}_{\underline{5}}}$: analytic structure

- Special 8+8 Q-functions with nice analyticity on physical sheet

- Various Q-functions are related by complex conjugation ("gluing" relations)

$$
\mathrm{Q}_{1} \propto \overline{\mathrm{Q}}^{2}, \quad \mathrm{Q}_{2} \propto \overline{\mathrm{Q}}^{1}, \quad \mathrm{Q}_{3} \propto \overline{\mathrm{Q}}^{4}, \quad \mathrm{Q}_{4} \propto \overline{\mathrm{Q}}^{3}
$$

- These Riemann-Hilbert conditions fix all physical solutions for Q-system and thus conformal dimensions $\Delta(g)$ with given $\operatorname{PSU}(2,2 \mid 4)$ charges

Dimensions of twist- $2,3, \ldots$ operators $\operatorname{Tr}\left(\Phi \nabla^{S} \Phi\right)$

- Numerics, weak and strong coupling from Quantum Spectral Curve;

Gromov,V.K.,Vieira '09
Frolov '10
Gromov, Valatka '12

Recent results "unlimited" precision
($\sim 30-50$ digits)

Cavaglia, Fioravanti,Gromov, Tateo '14
Cavaglia, Gromov, Stefanski,Torielli '21
$\begin{aligned} & \text { Weak couping (11 loops) } \begin{array}{l}\text { Gromov, VK, Leurent, Volin '13 } \\ \gamma_{\text {Konishi }}=\sum_{j=1}^{\infty} g^{2 j} \gamma_{j}\end{array} \quad \begin{array}{l}\text { Leurent, Serban, Volin'12 }\end{array} \\ & \text { Volin, Marboe '18 }\end{aligned}$
$\gamma_{11}=-242508705792+107663966208 \zeta_{3}+70251466752 \zeta_{3}^{2}-12468142080 \zeta_{3}^{3}$ $+1463132160 \zeta_{3}^{4}-71663616 \zeta_{3}^{5}+180173002752 \zeta_{5}-16655486976 \zeta_{3} \zeta_{5}$ $-24628230144 \zeta_{3}^{2} \zeta_{5}-2895575040 \zeta_{3}^{3} \zeta_{5}+19278176256 \zeta_{5}^{2}-9619845120 \zeta_{3} \zeta_{5}^{2}$ $+2504494080 \zeta_{3}^{2} \zeta_{5}^{2}+\frac{882108048384}{175} \zeta_{5}^{3}+45602231040 \zeta_{7}+14993482752 \zeta_{3} \zeta_{7}$ $-12034759680 \zeta_{3}^{2} \zeta_{7}+1406730240 \zeta_{3}^{3} \zeta_{7}+30605033088 \zeta_{5} \zeta_{7}+21217637376 \zeta_{3} \zeta_{5} \zeta_{7}$ $-\frac{1309941061632}{275} \zeta_{5}^{2} \zeta_{7}-13215327552 \zeta_{7}^{2}-4059901440 \zeta_{3} \zeta_{7}^{2}-69762034944 \zeta_{9}$ $+23284599552 \zeta_{3} \zeta_{9}-3631889664 \zeta_{3}^{2} \zeta_{9}-11032374528 \zeta_{5} \zeta_{9}-6666706944 \zeta_{3} \zeta_{5} \zeta_{9}$ $-23148129024 \zeta_{7} \zeta_{9}-10024051968 \zeta_{9}^{2}-54555179184 \zeta_{11}+\frac{1004854184}{5} \zeta_{3} \zeta_{11}$ $-726029568 \zeta_{3}^{2} \zeta_{11}-8975463552 \zeta_{5} \zeta_{11}-22529041920 \zeta_{7} \zeta_{11}-\frac{1437993422496}{175} \zeta_{13}$ $+\frac{1504385419392}{35} \zeta_{3} \zeta_{13}-30324602880 \zeta_{5} \zeta_{13}-\frac{151130039581392}{875} \zeta_{15}-41375093760 \zeta_{3} \zeta_{15}$ $-\frac{196484147423712}{275} \zeta_{17}+309361358592 \zeta_{19}-1729880064 Z_{11}^{(2)}-\frac{1620393984}{5} \zeta_{3} Z_{11}^{(2)}$ $-131383296 \zeta_{5} Z_{11}^{(2)}+\frac{138107420928}{175} Z_{13}^{(2)}+\frac{3543855344}{35} \zeta_{3} Z_{13}^{(2)}-\frac{5716780416}{7} Z_{13}^{(3)}$ $-\frac{674832384}{7} \zeta_{3} Z_{13}^{(3)}+\frac{48227088384}{175} Z_{15}^{(2)}+\frac{3581880576}{25} Z_{15}^{(3)}+754974720 Z_{15}^{(4)}$ $-\frac{854925544}{11} Z_{17}^{(2)}+\frac{4963245544}{55} Z_{17}^{(3)}+\frac{818159616}{275} Z_{17}^{(4)}+\frac{175333688448}{1925} Z_{17}^{(5)}$.

Fishnet CFT

γ-twisted N=4 SYM and "fishnet" limit

$$
\mathcal{L}=N_{c} \operatorname{tr}\left(F^{2}+D \bar{\phi}_{i} D \phi_{i}+i \bar{\psi}_{j} D \psi_{j}+i \bar{\lambda} D \lambda+\right.
$$

$$
\left.+g^{2}\left[\phi_{j}, \phi_{k}\right]_{q} \cdot\left[\bar{\phi}_{j}, \bar{\phi}_{k}\right]_{q}+i g \epsilon_{i j k} \bar{\psi}_{k}\left[\phi_{i}, \bar{\psi}_{j}\right]_{q}+g \bar{\lambda}\left[\phi_{j}, \bar{\psi}_{j}\right]_{q}+\text { conj. }\right)
$$

- γ-twisted $\mathrm{N}=4$ SYM Lagrangian: commutators \rightarrow q-commutators

$$
\begin{array}{ll}
{[A, B] \rightarrow[A, B]_{q} \equiv q_{A B} A B-\frac{1}{q_{A B}} B A \quad \text { where } \quad q_{A, B}=e^{-\frac{i}{2} \epsilon^{m j k} \gamma_{m} J_{j}^{A} J_{k}^{B}}=\left(q_{B, A}\right)^{-1}} \\
J_{1}^{A}, J_{2}^{A}, J_{3}^{A} \in S O(6) \text { - Cartan charges of R-symmetry } & \gamma_{1}, \gamma_{2}, \gamma_{3}-\text { twists } \quad \substack{\text { Leigh, Strassler } \\
\text { Frolov, Tseytlin } \\
\text { Beisert, Roiban } \\
\text { Lunin, Maldacena }}
\end{array}
$$

- Breaks R -symmetry and all supersymmetry: $\mathrm{PSU}(2,2 \mid 4) \rightarrow \mathrm{SU}(2,2) \times \mathrm{U}(1)^{3}$
- Double scaling "fishnet" limit: Strong imaginary twist, weak coupling:

$$
g \rightarrow 0, \quad \gamma_{j} \rightarrow i \infty, \quad \xi_{j}=g e^{-i \gamma_{j} / 2}-\text { fixed }, \quad(j=1,2,3 .)
$$

- Planar Feynman graphs form a dynamical fishnet: solid lines - bosons, dashed lines - fermions

Intersection with fermionic lines are disentangled intoYukawa vertices
in a unique way
V.K., Olivucci, Preti '18

- Integrable, since deduced from integrable N=4 SYM! But how to see it explicitly?

Special case: bi-scalar Fishnet CFT_{4}

- Retain only one coupling in fishnet limit of $\mathrm{N}=4$ SYM:
$\xi_{1}=\xi_{2}=0, \quad \xi_{3} \equiv \xi \neq 0$

$$
\begin{aligned}
\mathcal{L}\left[\phi_{1}, \phi_{2}\right]=\frac{N_{c}}{2} & \operatorname{tr}\left(\partial^{\mu} \bar{\phi}_{1} \partial_{\mu} \phi_{1}+\partial^{\mu} \bar{\phi}_{2} \partial_{\mu} \phi_{2}+2 \xi^{2} \bar{\phi}_{1} \bar{\phi}_{2} \phi_{1} \phi_{2}\right) \\
i & =\bar{j}^{k}=\frac{\delta_{i k} \delta_{j l}}{N_{c}(x-y)^{2}}
\end{aligned}
$$

Missing "antichiral" vertex

- $N=4$ SYM planar graphs reduce, in the bulk, to (very few!) fishnet graphs.

Integrable!
A.Zamolodchikov ‘ 80

0-dim analogue:
Kostov, Staudacher '96

- No mass or vertex renormalization! Coupling ξ does not run!
- But there are double-trace counterterms with ξ dependent couplings:

$$
\left.\operatorname{tr}\left(\bar{\phi}_{1} \bar{\phi}_{2}\right) \operatorname{tr}\left(\bar{\phi}_{1} \phi_{2}\right), \quad \operatorname{tr}\left(\phi_{1} \bar{\phi}_{2}\right) \operatorname{tr}\left(\bar{\phi}_{1} \phi_{2}\right)\right), \quad \operatorname{tr}\left(\phi_{j} \bar{\phi}_{j}\right) \operatorname{tr}\left(\phi_{j} \bar{\phi}_{j}\right)
$$

- One can study correlators of local operators

$$
\mathcal{O}(x)=C^{\mu_{1} \ldots \mu_{n}} \operatorname{tr}\left[\partial_{\mu_{1}} \ldots \partial_{\mu_{n}}\left(\phi_{1}\right)^{L}\left(\phi_{2}\right)^{M}\left(\bar{\phi}_{1}\right)^{K}\left(\bar{\phi}_{2}\right)^{N}\right](x)+\text { permutations }
$$

Operators, correlators, graphs...

- Explicit computations of correlators
"vacuum" operator $\operatorname{tr}\left[\phi_{1}(x)\right]^{L}$

Gurdogan, V.K '15
Caetano, Gurdogan, V.K '16

Multi-magnon spiral graphs

Grabner, Gromov, V.K, Korchemsky '17 V.K., Olivucci 2018 Gromov, V.K , Korchemsky '18 V.K., Olivucci, Preti, '19

Pittelli, Preti '19
Gromov, Sever '20
Olivucci, Vieira '22
Olivucci '23

- Basso-Dixon 4-point functions through determinant of "ladder" graphs, Sklyanin SoV

- Amplitudes, Yangian symmetry, Calabi-Yau periods...
- Thermodynamical Bethe Ansatz for Fishnet
- "Fishchain": AdS dual for Fishnet
- Non-trivial flat vacua in Fishnet CFT

Davidichev, Ushuikina
Basso, Dixon
Derkachev, V.K., Olivucci
Derkachev, Ferrando, Olivucci '21
Dercachov, Olivucci '21
Basso, Dixon, Kosover, Krajenbrink, Zhong '21 Kostov '23

> Chicherin, V.K., Mueller, Loebbert, Zheng '17
> Corcoran, Loebbert, Miczajka, Muller, Munkler '20
> Duhr, Klemm Loebbert, Nega, Porkert'22
> V.K., Levkovich-Maslyuk, Mishnyakov '23

Basso, Zhong '19
Basso, Ferrando, V.K., Zhong '19
Gromov, Sever '19
V.K., Karananas, Shaposhnikov '19

Ipsen, Staudacher, Zippelius '18
Ahn, Staudacher '21, '22
Ferrando, Sever '23

Dimension of $\operatorname{tr}\left(\phi_{1}\right)^{3}$ and periods of wheel graphs from QSC

- Based on Quantum Spectral curve of $\mathscr{P}=4$ SYM

Baxter eq.:
Asymptotics:

Quantization condition

$$
\begin{aligned}
& \left(\frac{(\Delta-1)(\Delta-3)}{4 u^{2}}-\frac{i \xi^{3}}{u^{3}}-2\right) q(u)+q(u+i)+q(u-i)=0 \\
& q_{1}(u, \xi) \sim u^{\Delta / 2-1 / 2}\left(1+\frac{\alpha_{1}}{u}+\frac{\alpha_{2}}{u^{2}}+\cdots\right) \\
& q_{2}(u, \xi) \sim u^{-\Delta / 2+3 / 2}\left(1+\frac{\beta_{1}}{u}+\frac{\beta_{2}}{u^{2}}+\cdots\right) \\
& q_{1}(0, \xi) q_{2}(0,-\xi)+q_{2}(0,-\xi) q_{1}(0, \xi)=0
\end{aligned}
$$

High precision numericsfor spectrum and "PT" symmetry

Gromov, V.K, Korchemsky, Negro, Sizov ' 17

- The two dimensions are real for $\xi<\xi_{\mathrm{c}}$, but they turn to complex conjugates for $\xi>\xi_{\mathrm{c}}$
- The reason for this reality of spectrum: "PT" symmetry of Fishnet CFT v.K., Olivucci '22 "PT"-transformation leaves the action invariant (but not operators!):

$$
\operatorname{tr}\left(\phi_{1} \phi_{2} \bar{\phi}_{1} \bar{\phi}_{2}\right) \quad \stackrel{T}{\text { complex conjugate }} \quad \stackrel{\text { transpose }}{ } \quad \operatorname{tr}\left(\phi_{2} \phi_{1} \bar{\phi}_{2} \bar{\phi}_{1}\right) \stackrel{{ }^{\prime \prime} P^{\prime \prime}}{\rightarrow} \quad \operatorname{tr}\left(\phi_{1} \phi_{2} \bar{\phi}_{1} \bar{\phi}_{2}\right)
$$

Conformal dimension gets complex conjugate (non-unitary theory!):

$$
[\langle\overline{\mathcal{O}}(x) \mathcal{O}(0)\rangle]^{\mathrm{PT}}=\left\langle\overline{\mathcal{O}}^{\mathrm{PT}}(x) \mathcal{O}^{\mathrm{PT}}(0)\right\rangle=|x|^{-2 \Delta^{*}}
$$

The spectrum consists of real dimensions and/or of complex conjugate pairs!
Similar to energy spectrum of non-unitary PT-invariant quantum mechanics

$$
\mathcal{H}=\hat{p}^{2} / 2+x^{2}(i x)^{\epsilon}
$$

Loom for fishnet CFTs from Baxter lattices

- Baxter lattice for general Fishnet CFT: M intersecting lines with M slopes

Feynman integral for this graph:
 "Checkerboard" manner Connect vertices at even (white)

$$
\mathcal{G}_{B}=\int \prod_{m \in \mathcal{L}_{I}} d^{D} x_{m} \prod_{<j, k>\in \mathcal{L}_{I}} G_{D}\left(x_{j}, x_{k}, \alpha_{j k}\right)
$$

Integrability of such "loom" graphs based on star-triangle relation

$$
G_{D}\left(x_{j}, x_{k}, \alpha_{j k}\right)=\left|x_{j}-x_{k}\right|^{\frac{D}{\pi}\left(\alpha_{j k}-\pi\right)}
$$

All Feynman graphs of the loom are connected by star-triangle relations!

[^0]
Generalized Fishnet CFT: Kinetic Terms

To accommodate all these graphs within a Fishnet CFT(M), we need $M(M-1)$ scalar fields (two for each crossing)

Kinetic terms are defined by dimensions of fields:

$$
\mathcal{L}_{\text {kin }}=\frac{N_{c}}{2} \operatorname{tr}\left(-\sum_{j=1}^{M(M-1)} \bar{\phi}_{i}\left(\square^{D / 2-\Delta_{\phi_{i}}}\right) \phi_{i}\right)
$$

Example of $M=3$:
6 fields with dimensions

$$
\Delta_{X}
$$

Δ_{Y}

$$
\Delta_{Z}=\frac{D}{2}-\Delta_{X}-\Delta_{Y}
$$

$$
\Delta_{u}=\frac{D}{2}-\Delta_{X}
$$

$$
\Delta_{v}=\frac{D}{2}-\Delta_{Y}
$$

$$
\Delta_{w}=\Delta_{X}+\Delta_{Y}
$$

Generalized Fishnet CFT: Interactions

Construct the vertices: start from the largest one and consecutively replace pairs of fields by the "dual" fields (according to star-triangle): For example, general $\mathrm{FCFT}^{(3)}$ has 18 vertices:
$X Y \rightarrow w$
$Y Z \rightarrow u$
$Z \bar{X} \rightarrow v$
1 sextic $\quad \operatorname{tr}(X Y Z \bar{X} \bar{Y} \bar{Z})$

6 quintic $\operatorname{tr}(w Z \bar{X} \bar{Y} \bar{Z}) \quad \operatorname{tr}(X u \bar{X} \bar{Y} \bar{Z}) \quad \operatorname{tr}(X Y v \bar{Y} \bar{Z})$

$$
\operatorname{tr}(X Y Z \bar{w} \bar{Z}) \quad \operatorname{tr}(X Y Z \bar{X} \bar{u}) \quad \operatorname{tr}(Y Z \bar{X} \bar{Y} \bar{v})
$$

Each vertex has its independent coupling ξ_{j}

9 quartic

$$
\begin{array}{ccc}
\operatorname{tr}(w v \bar{Y} \bar{Z}) & \operatorname{tr}(w Z \bar{X} \bar{u}) & \operatorname{tr}(X Y v \bar{u}) \\
\operatorname{tr}(u \bar{X} \bar{Y} \bar{v}) & \operatorname{tr}(X Y v \bar{u}) & \operatorname{tr}(Y Z \bar{w} \bar{v}) \\
\operatorname{tr}(Y v \bar{Y} \bar{v}) & \operatorname{tr}(w Z \bar{w} \bar{Z}) & \operatorname{tr}(u Z \bar{X} \bar{u} Z)
\end{array}
$$

2 cubic

$$
\operatorname{tr}(v \bar{w} \bar{u}) \quad \operatorname{tr}(w v \bar{u})
$$

There are also double-trace terms...

These "Loom" Fishnet CFTs have integrable planar graphs at any D !

Checkerboard FCFT ${ }^{(4)}$

A Loom FCFT with M=4 slopes but only two interaction terms turned on:

$$
\left.\mathcal{L}_{D}^{(C D)}\right|_{w_{4}=0}=N_{c} \operatorname{tr}\left[-\sum_{j=1}^{4} \bar{X}_{j} \square^{w_{j}} X_{j}+\xi_{1}^{2} \bar{X}_{1} \bar{X}_{2} X_{3} X_{4}+\xi_{2}^{2} X_{1} X_{2} \bar{X}_{3} \bar{X}_{4}\right], \quad \sum_{j=1}^{4} w_{j}=D
$$

R-matrix in principals series irrep of conformal group

Derkachov, Korchemsky, Manashov '01 Chicherin, Derkachev, Isaev'12

$$
a=\left|x_{1}-x_{2}\right|^{-2 a}
$$

Satisfies Yang-Baxter relation:

$$
\mathcal{L}_{3}^{(\mathrm{ABJM} \mathrm{FCFT})}=N_{c} \operatorname{tr}\left[\sum_{j=1}^{3} \partial^{\mu} \bar{X}_{j} \partial_{\mu} X_{j}+\left(\xi_{1} \xi_{2}\right)^{2} \bar{X}_{1} \bar{X}_{2} X_{3} X_{1} X_{2} \bar{X}_{3}\right]
$$

Caetano, Gurdogan, V.K., '16

- At $u \rightarrow 0$ for $D=2, w_{1}=u+2, w_{2}=-u, w_{3}=u, w_{4}=-u$ transfer matrix becomes Lipatov's Hamiltonian for reggeized gluons in QCD

4-point correlator for Checkerboard $\mathrm{FCFT}^{(4)}$

$$
\left\langle\operatorname{tr}\left[X_{1} X_{2}(x) X_{1} X_{2}(y)\right] \operatorname{tr}\left[\bar{X}_{3} \bar{X}_{4}\left(x^{\prime}\right) \bar{X}_{3} \bar{X}_{4}\left(y^{\prime}\right)\right]\right\rangle_{c}
$$

- Given by ladder graphs (each square is R-matrix)
- $S O(2, D)$ spin chain of Length=2. Solvable using only conformal symmetry!

We have to diagonalize the graph building operator

Multiplying and dividing by same (green) propagator we get computable "kite" integrals:

Grozin
Derkachev et al'21

Spectrum of exchange operators in OPE: $h(\Delta)=\frac{1}{\xi^{4}}$
In the ABJM limit, perturbation theory: $\gamma=\Delta-2$

$$
\frac{1-\gamma}{\xi^{4}}=-\frac{1}{1024 \pi^{4} \gamma}\left(12 \mathfrak{L}_{2}+6 \mathfrak{L}_{1}^{2}+\left(12 \mathfrak{L}_{3}-2 \mathfrak{L}_{1}^{3}\right) \gamma+\left(12 \mathfrak{N}_{4}+\frac{18}{5} \mathfrak{L}_{2}^{2}+\frac{18}{5} \mathfrak{L}_{2} \mathfrak{L}_{1}^{2}+\frac{7}{5} \mathfrak{L}_{1}^{4}\right) \gamma^{2}+\hat{\mathcal{O}\left(\gamma^{3}\right)}\right),
$$

$$
\mathfrak{L}_{j} \equiv \mathrm{Li}_{j}\left(\frac{1}{2}\right)
$$

Transcendentality!

Yangian symmetry for planar correlators

- Single-trace correlator in bi-scalar Fishnet CFT is given by a single planar Feynman diagram -disc cut out of regular square lattice:
- "Lasso" operator: product of Lax matrices

$$
\begin{array}{cc}
\begin{array}{c}
\text { auxiliary } \\
\text { compact }
\end{array} \overbrace{\substack{\text { Conformal } \\
\text { non-compact }}} & L\left(u_{+}, u_{-}\right)=\left(\begin{array}{cc}
u_{+}-\mathbf{p x} & \mathbf{p} \\
\mathbf{x}\left(u_{+}-u_{-}\right)-\mathbf{x p x} \mathbf{x p}+u_{-}
\end{array}\right) \\
& \mathbf{x}=-i \bar{\sigma}^{\mu} x_{\mu}, \quad \mathbf{p}=-\frac{i}{2} \sigma^{\mu} \partial_{x_{\mu}} \\
& u_{+}=u+\frac{\Delta-D}{2}, \quad u_{-}=u-\frac{\Delta}{2}
\end{array}
$$

- Graph is an eigenfunction of Lasso $\quad\left(L_{1} L_{2} \ldots L_{n}\right)_{\alpha \beta} \mid$ graph $\rangle=\lambda(u) \delta_{\alpha \beta} \mid$ graph \rangle
- Generalization to arbitrary loom
V.K., Levkovich-Maslyuk, Mishnyakov, '23
$\left(L_{n}\left[\delta_{n}^{+}, \delta_{n}^{-}\right] \ldots L_{2}\left[\delta_{2}^{+}, \delta_{2}^{-}\right] L_{1}\left[\delta_{1}^{+}, \delta_{1}^{-}\right]\right)_{\alpha \beta}|G\rangle=\delta_{\alpha \beta} \lambda(u)|G\rangle$
- $1 / u^{n-2}$ term gives Yangian diff. eq.: $\quad \widehat{P}^{\mu} \mid$ graph $\rangle=0$

Level-1 momentum operator:
$\widehat{P}^{\mu}=-\frac{i}{2} \sum_{j<k}\left[\left(L_{j}^{\mu \nu}+g^{\mu \nu} D_{j}\right) P_{k, \nu}-(j \leftrightarrow k)\right]+\sum_{j} v_{j} P_{j}^{\mu}$

$$
v_{k}=\frac{1}{2} \sum_{j \neq k}\left(\delta_{j}^{+}+\delta_{j}^{-}+D / 2\right)
$$

- A potentially powerful tool for computation of Feynman graphs

Loebbert, Miczajka, Mueller, Muenkler, '20
Corcoran, Loebbert, Miczajka, Staudacher,'20
Duhr, Klemm, Loebbert, Nega, Porkert,' 22

Happy Birthday Fedya!

Joyeux Anniversaire Fedya! С Юбилеем, Федя!

Example: 4-loop graph with 6 legs

- We impose: conformality of vertices:
En
- Loom (integrability) condition:

$$
\Delta_{6}+\Delta_{2}+\Delta_{5}=D
$$

- We can express all 10 dimensions in terms of 5 parameters, say

$$
\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{5}, \Delta_{1}^{\prime}
$$

- Lasso for that graph:

$$
\begin{array}{r}
L_{6}\left[\Delta_{\left(11^{\prime}\right)}+D / 2, \Delta_{\left(121^{\prime} 5\right)}\right] L_{5}\left[\Delta_{\left(121^{\prime} 5\right)}-D / 2, \Delta_{\left(121^{\prime}\right)}\right] L_{4}\left[D, \Delta_{(13)}+D / 2\right] \times L_{3}\left[\Delta_{(13)}, \Delta_{1}+D / 2\right] L_{2}\left[\Delta_{\left(121^{\prime}\right)}-D / 2, \Delta_{\left(11^{\prime}\right)}\right] L_{1}\left[\Delta_{1}, D / 2\right] \\
\text { where: } \Delta_{\left(a_{1} a_{2} \ldots a_{p}\right)}=\Delta_{a_{1}}+\Delta_{a_{2}}+\cdots+\Delta_{a_{p}}
\end{array}
$$

- Evaluation parameters for that graph:

$$
\begin{aligned}
v_{k}=\{0, & -\Delta_{1}^{\prime}-\frac{\Delta_{1}}{2}-\frac{\Delta_{2}}{2}+D / 2,-\frac{\Delta_{1}}{2}-\frac{\Delta_{3}}{2},-\frac{\Delta_{3}}{2}-D / 2, \\
& \left.-\Delta_{1}^{\prime}-\frac{\Delta_{1}}{2}-\Delta_{2}-\frac{\Delta_{5}}{2}+D / 2,-\Delta_{1}^{\prime}-\frac{\Delta_{1}}{2}-\frac{\Delta_{2}}{2}-\frac{\Delta_{5}}{2}\right\}
\end{aligned}
$$

Diamond and Basso-Dixon type graphs for Checkerboard

4-point function given by rectangular fishnet graph

$$
I_{2 n+1,2 m}=\left\langle\operatorname{Tr}\left(\left(Z_{1} Z_{3}\right)^{n} Z_{1}\right)\left(x_{1}\right)\left(Z_{2} Z_{4}\right)^{m}\left(x_{2}\right)\left(\left(\bar{Z}_{1} \bar{Z}_{3}\right) \bar{Z}_{1}\right)^{n}\left(x_{3}\right)\left(\bar{Z}_{2} \bar{Z}_{4}\right)^{m}\left(x_{4}\right)\right\rangle
$$

 using the methods of

Derkachev, Korchemsky, Manashev 94, Derkachev, V.K., Olivucci 18' Derkachev, Olivucci '19 Derkachev, Ferrando, Olivucci '20
4-point functions given by "diamond" fishnet graphs (4 types)

$$
G_{m, n}^{(I)}=\left\langle\operatorname{Tr}\left(Z_{1} \bar{Z}_{4}\right)^{m}\left(x_{1}\right)\left(Z_{4} Z_{3}\right)^{n}\left(x_{2}\right)\left(\bar{Z}_{3} Z_{2}\right)^{m}\left(x_{3}\right)\left(\bar{Z}_{2} \bar{Z}_{1}\right)^{n}\left(x_{4}\right)\right.
$$

For generic weights, both are zero for $\mathrm{m}>\mathrm{n}$ and tree-like for $\mathrm{m}=\mathrm{n}$
Type II is non-trivial for $\mathrm{m}<\mathrm{n}$

$$
G_{m, n}^{(I I)}=\left\langle\operatorname{Tr}\left[\left(Z_{2} \bar{Z}_{3}\right)^{m}\left(x_{1}\right)\left(Z_{4} Z_{3}\right)^{n}\left(x_{2}\right)\left(\bar{Z}_{3} Z_{2}\right)^{m}\left(x_{3}\right)\left(\bar{Z}_{1} \bar{Z}_{2}\right)^{n}\left(x_{4}\right)\right]\right\rangle
$$

ABJM and BFKL Fishnet CFTs from $\mathrm{FCFT}^{(4)}$

- ABJM $\operatorname{FCFT}^{(3)}$ emerges in 3D, for $w_{1}=w_{2}=w_{3}=1, w_{4}=0$

$$
\begin{aligned}
\left.\mathcal{L}_{D}^{(C D)}\right|_{w_{4}=0} & =N_{c} \operatorname{tr}\left[-\sum_{j=1}^{3} \bar{X}_{j} \square_{j} X_{j}-\bar{X}_{4} X_{4}+\xi_{1}^{2} \bar{X}_{1} \bar{X}_{2} X_{3} X_{4}+\xi_{2}^{2} X_{1} X_{2} \bar{X}_{3} \bar{X}_{4}\right] \\
& \rightarrow N_{c} \operatorname{tr}\left[\sum_{j=1}^{3} \partial^{\mu} \bar{X}_{j} \partial_{\mu} X_{j}+\left(\xi_{1} \xi_{2}\right)^{2} \bar{X}_{1} \bar{X}_{2} X_{3} X_{1} X_{2} \bar{X}_{3}\right]
\end{aligned}
$$

- Another interesting case: $D=2, \quad w_{1}=u+2, w_{2}=-u, w_{3}=u, w_{4}=-u$ At $u \rightarrow 0$ the transfer matrix becomes Lipatov's Hamiltonian for reggeized gluons in QCD

[^0]: We will construct Fishnet $\mathrm{CFT}{ }^{(\mathrm{M})}$ with all such Feynman graphs

