Supersymmetry and trace formulas: Selberg trace formula

Leon A. Takhtajan
Stony Brook University, Stony Brook NY, USA Euler Mathematical Institute, Saint Petersburg, Russia
"Integrable systems and field theory"
65th birthday of Fedor Smirnov
October 11-13, 2023
Paris, France

(Based on the joint work with Changha Choi, arXiv:2112.07942 \& arXiv:2306.13636)

I. Introduction

- Supersymmetry, a global symmetry between bosons and fermions, provides invaluable insights to the non-perturbative aspects of general strongly coupled quantum field theories, and is deeply related to various areas of mathematics.
(Based on the joint work with Changha Choi, arXiv:2112.07942 \& arXiv:2306.13636)

I. Introduction

- Supersymmetry, a global symmetry between bosons and fermions, provides invaluable insights to the non-perturbative aspects of general strongly coupled quantum field theories, and is deeply related to various areas of mathematics.
- The Hilbert space of a supersymmetric quantum theory

$$
\mathscr{H}=\mathscr{H}^{+} \oplus \mathscr{H}^{-}
$$

is graded by a fermion number operator F.
(Based on the joint work with Changha Choi, arXiv:2112.07942 \& arXiv:2306.13636)

I. Introduction

- Supersymmetry, a global symmetry between bosons and fermions, provides invaluable insights to the non-perturbative aspects of general strongly coupled quantum field theories, and is deeply related to various areas of mathematics.
- The Hilbert space of a supersymmetric quantum theory

$$
\mathscr{H}=\mathscr{H}^{+} \oplus \mathscr{H}^{-}
$$

is graded by a fermion number operator F.

- The Witten index

$$
I=\operatorname{Str} e^{-\beta \hat{H}}=\operatorname{Tr}(-1)^{F} e^{-\beta \hat{H}}
$$

gives precise non-perturbative information about the ground states of a supersymmetric quantum Hamiltonian \hat{H}.
(Based on the joint work with Changha Choi, arXiv:2112.07942 \& arXiv:2306.13636)

I. Introduction

- Supersymmetry, a global symmetry between bosons and fermions, provides invaluable insights to the non-perturbative aspects of general strongly coupled quantum field theories, and is deeply related to various areas of mathematics.
- The Hilbert space of a supersymmetric quantum theory

$$
\mathscr{H}=\mathscr{H}^{+} \oplus \mathscr{H}^{-}
$$

is graded by a fermion number operator F.

- The Witten index

$$
I=\operatorname{Str} e^{-\beta \hat{H}}=\operatorname{Tr}(-1)^{F} e^{-\beta \hat{H}}
$$

gives precise non-perturbative information about the ground states of a supersymmetric quantum Hamiltonian \hat{H}.

- I is related to the index of the Dirac operator and is computed by supersymmetric localization, the infinite-dimensional version of the Duistermaat-Heckman formula.

1. $N=1 / 2$ supersymmetry

- Classical supersymmetric system with the Lagrangian \mathcal{L}, Hamiltonian H and a single real supercharge Q, satisfying

$$
\{Q, Q\}=2 i H
$$

1. $N=1 / 2$ supersymmetry

- Classical supersymmetric system with the Lagrangian \mathcal{L}, Hamiltonian H and a single real supercharge Q, satisfying

$$
\{Q, Q\}=2 i H
$$

- Quantization - the simplest $N=1 / 2$ supersymmetric quantum system with the real supercharge \hat{Q}, satisfying

$$
\hat{Q}^{2}=\hat{H}
$$

where quantum Hamiltonian \hat{H} acts in the Hilbert space \mathscr{H}.

1. $N=1 / 2$ supersymmetry

- Classical supersymmetric system with the Lagrangian \mathcal{L}, Hamiltonian H and a single real supercharge Q, satisfying

$$
\{Q, Q\}=2 i H
$$

- Quantization - the simplest $N=1 / 2$ supersymmetric quantum system with the real supercharge \hat{Q}, satisfying

$$
\hat{Q}^{2}=\hat{H}
$$

where quantum Hamiltonian \hat{H} acts in the Hilbert space \mathscr{H}.

- The Witten index is given by the path integral

$$
I=\operatorname{Tr}(-1)^{F} e^{-\beta \hat{H}}=\int e^{-S_{E}[x, \psi]} \mathscr{D} x \mathscr{D} \psi
$$

where

$$
S_{E}[x, \psi]=\int_{0}^{\beta} \mathcal{L}_{E}(x, \dot{x} ; \psi, \dot{\psi}) d t
$$

is the Euclidean action, and $\mathscr{D} x \mathscr{D} \psi$ is path integration 'measure' for the bosonic and fermionic degrees of freedom.

- The integration goes over periodic boundary conditions and

$$
\delta S_{E}=0 \quad \text { and } \quad \delta(\mathscr{D} x \mathscr{D} \psi)=0
$$

Here δ is the Wick rotated classical supersymmetry transformation generated by a supercharge Q,

$$
\delta x^{\mu}=\left\{Q, x^{\mu}\right\}=\psi^{\mu}, \quad \delta \psi^{\mu}=\left\{Q, \psi^{\mu}\right\}=-\dot{x}^{\mu} .
$$

- The integration goes over periodic boundary conditions and

$$
\delta S_{E}=0 \quad \text { and } \quad \delta(\mathscr{D} x \mathscr{D} \psi)=0 .
$$

Here δ is the Wick rotated classical supersymmetry transformation generated by a supercharge Q,

$$
\delta x^{\mu}=\left\{Q, x^{\mu}\right\}=\psi^{\mu}, \quad \delta \psi^{\mu}=\left\{Q, \psi^{\mu}\right\}=-\dot{x}^{\mu} .
$$

- Let $V[x, \psi]$ be an invariant deformation, a functional of classical fields satisfying

$$
\delta^{2} V=0
$$

The key fact: for all real λ we have

$$
\int e^{-S_{E}} \mathscr{D} x \mathscr{D} \psi=\int e^{-S_{E}-\lambda \delta V} \mathscr{D} x \mathscr{D} \psi
$$

- The integration goes over periodic boundary conditions and

$$
\delta S_{E}=0 \quad \text { and } \quad \delta(\mathscr{D} x \mathscr{D} \psi)=0
$$

Here δ is the Wick rotated classical supersymmetry transformation generated by a supercharge Q,

$$
\delta x^{\mu}=\left\{Q, x^{\mu}\right\}=\psi^{\mu}, \quad \delta \psi^{\mu}=\left\{Q, \psi^{\mu}\right\}=-\dot{x}^{\mu} .
$$

- Let $V[x, \psi]$ be an invariant deformation, a functional of classical fields satisfying

$$
\delta^{2} V=0
$$

The key fact: for all real λ we have

$$
\int e^{-S_{E}} \mathscr{D} x \mathscr{D} \psi=\int e^{-S_{E}-\lambda \delta V} \mathscr{D} x \mathscr{D} \psi
$$

- In case $S_{E}=\delta V$ the path integral in the limit $\lambda \rightarrow \infty$ localizes on the zero locus of S_{E}. The latter is the set of constant loops, arising from the standard kinetic term in the action.

2. Example

- M is compact, spin, Riemannian manifold and $\not \partial=\gamma^{\mu}(\boldsymbol{x}) \nabla_{\mu}$ is the Dirac operator of the Levi-Civita connection ∇ on M.

2. Example

- M is compact, spin, Riemannian manifold and $\not \partial=\gamma^{\mu}(\boldsymbol{x}) \nabla_{\mu}$ is the Dirac operator of the Levi-Civita connection ∇ on M.
- Euclidean action

$$
S_{E}=\frac{1}{2} \int_{0}^{\beta} g_{\mu \nu}(x)\left(\dot{x}^{\mu} \dot{x}^{\nu}+\psi^{\mu} \nabla_{\dot{x}} \psi^{\nu}\right) d t
$$

is supersymmetric, $S=\delta Q$, where classical supercharge is

$$
Q=g_{\mu \nu} \psi^{\mu} \dot{x}^{\nu}=\psi^{\mu} p_{\mu}
$$

2. Example

- M is compact, spin, Riemannian manifold and $\not \partial=\gamma^{\mu}(\boldsymbol{x}) \nabla_{\mu}$ is the Dirac operator of the Levi-Civita connection ∇ on M.
- Euclidean action

$$
S_{E}=\frac{1}{2} \int_{0}^{\beta} g_{\mu \nu}(x)\left(\dot{x}^{\mu} \dot{x}^{\nu}+\psi^{\mu} \nabla_{\dot{x}} \psi^{\nu}\right) d t
$$

is supersymmetric, $S=\delta Q$, where classical supercharge is

$$
Q=g_{\mu \nu} \psi^{\mu} \dot{x}^{\nu}=\psi^{\mu} p_{\mu}
$$

- Quantum supercharge and Hamiltonian operator are

$$
\hat{Q}=\not \partial, \quad \hat{H}=\hat{Q}^{2}
$$

2. Example

- M is compact, spin, Riemannian manifold and $\not \partial=\gamma^{\mu}(\boldsymbol{x}) \nabla_{\mu}$ is the Dirac operator of the Levi-Civita connection ∇ on M.
- Euclidean action

$$
S_{E}=\frac{1}{2} \int_{0}^{\beta} g_{\mu \nu}(x)\left(\dot{x}^{\mu} \dot{x}^{\nu}+\psi^{\mu} \nabla_{\dot{x}} \psi^{\nu}\right) d t
$$

is supersymmetric, $S=\delta Q$, where classical supercharge is

$$
Q=g_{\mu \nu} \psi^{\mu} \dot{x}^{\nu}=\psi^{\mu} p_{\mu}
$$

- Quantum supercharge and Hamiltonian operator are

$$
\hat{Q}=\not \partial, \quad \hat{H}=\hat{Q}^{2}
$$

- The Witten index $(\mathcal{L}(M)$ is a free loop space of $M)$

$$
I=\operatorname{Str} e^{-\beta \hat{H}}=\int_{\Pi T \mathcal{L}(M)} e^{-S_{E}} \mathscr{D} x \mathscr{D} \psi
$$

localizes on constant loops (Witten 1982, Atiyah 1985); explicit computation (L. Alvarez-Gaumé, 1983) gives Atiyah-Singer formula for the index of Dirac operator.
II. New localization principle

- Can one compute full thermal partition function - the trace of the Euclidean evolution operator - and not only the supertrace?
II. New localization principle
- Can one compute full thermal partition function - the trace of the Euclidean evolution operator - and not only the supertrace?
- The answer: it could be possible when the Witten index vanishes!
II. New localization principle
- Can one compute full thermal partition function - the trace of the Euclidean evolution operator - and not only the supertrace?
- The answer: it could be possible when the Witten index vanishes!
- Namely suppose that
II. New localization principle
- Can one compute full thermal partition function - the trace of the Euclidean evolution operator - and not only the supertrace?
- The answer: it could be possible when the Witten index vanishes!
- Namely suppose that

1. Fermion degrees of freedom decouple and have zero modes

$$
\chi_{1}, \ldots, \chi_{n}, \text { so } I=0 .
$$

II. New localization principle

- Can one compute full thermal partition function - the trace of the Euclidean evolution operator - and not only the supertrace?
- The answer: it could be possible when the Witten index vanishes!
- Namely suppose that

1. Fermion degrees of freedom decouple and have zero modes

$$
\chi_{1}, \ldots, \chi_{n}, \text { so } I=0 .
$$

2. In the Hilbert space \mathscr{H} the Majorana fermions $\hat{\chi}_{1}, \ldots, \hat{\chi}_{n}$ satisfy

$$
\hat{\chi}_{1} \cdots \hat{\chi}_{n}=2^{-\frac{n}{2}}(-1)^{F}
$$

So

$$
\operatorname{Str} \hat{\chi}_{1} \cdots \hat{\chi}_{n} e^{-\beta \hat{H}}=2^{-\frac{n}{2}} \operatorname{Tr} e^{-\beta \hat{H}}=\int \chi_{1} \cdots \chi_{n} e^{-S_{E}} \mathscr{D} x \mathscr{D} \psi
$$

II. New localization principle

- Can one compute full thermal partition function - the trace of the Euclidean evolution operator - and not only the supertrace?
- The answer: it could be possible when the Witten index vanishes!
- Namely suppose that

1. Fermion degrees of freedom decouple and have zero modes

$$
\chi_{1}, \ldots, \chi_{n} \text {, so } I=0 .
$$

2. In the Hilbert space \mathscr{H} the Majorana fermions $\hat{\chi}_{1}, \ldots, \hat{\chi}_{n}$ satisfy

$$
\hat{\chi}_{1} \cdots \hat{\chi}_{n}=2^{-\frac{n}{2}}(-1)^{F},
$$

so

$$
\operatorname{Str} \hat{\chi}_{1} \cdots \hat{\chi}_{n} e^{-\beta \hat{H}}=2^{-\frac{n}{2}} \operatorname{Tr} e^{-\beta \hat{H}}=\int \chi_{1} \cdots \chi_{n} e^{-S_{E}} \mathscr{D} x \mathscr{D} \psi
$$

- However, the path integral nontrivially depends on β and since $\delta\left(\chi_{1} \cdots \chi_{n} e^{-S_{E}}\right) \neq 0$, standard localization does not apply.
- Still, one can formulate a new localization principle by 'saturating fermion zero modes'.
- Still, one can formulate a new localization principle by 'saturating fermion zero modes'.
(A) $\delta \chi_{\mu}$ does not contain fermion degree freedom χ_{μ}

$$
\int \delta \chi_{\mu} d \chi_{\mu}=0, \quad \mu=1, \ldots, n
$$

- Still, one can formulate a new localization principle by 'saturating fermion zero modes'.
(A) $\delta \chi_{\mu}$ does not contain fermion degree freedom χ_{μ}

$$
\int \delta \chi_{\mu} d \chi_{\mu}=0, \quad \mu=1, \ldots, n
$$

(B) deformation V is invariant

$$
\delta^{2} V=0
$$

- Still, one can formulate a new localization principle by 'saturating fermion zero modes'.
(A) $\delta \chi_{\mu}$ does not contain fermion degree freedom χ_{μ}

$$
\int \delta \chi_{\mu} d \chi_{\mu}=0, \quad \mu=1, \ldots, n
$$

(B) deformation V is invariant

$$
\delta^{2} V=0
$$

(C)

$$
\int V d \chi_{\mu}=\int \delta V d \chi_{\mu}=0, \quad \mu=1, \ldots, n
$$

- Still, one can formulate a new localization principle by 'saturating fermion zero modes'.
(A) $\delta \chi_{\mu}$ does not contain fermion degree freedom χ_{μ}

$$
\int \delta \chi_{\mu} d \chi_{\mu}=0, \quad \mu=1, \ldots, n
$$

(B) deformation V is invariant

$$
\delta^{2} V=0
$$

(C)

$$
\int V d \chi_{\mu}=\int \delta V d \chi_{\mu}=0, \quad \mu=1, \ldots, n
$$

- Note that condition (A) is rather natural, condition (B) is standard, while condition (C), the absence of fermion zero modes in V and δV, is a completely new requirement. It is rather constraining and forces V to explicitly depend on the first time derivatives of fermion degrees of freedom.
- The new localization principle is the following statement.
- The new localization principle is the following statement.
- Let S_{E} be the Euclidean action of the supersymmetric theory with fermion zero modes $\chi_{1}, \ldots, \chi_{n}$ satisfying conditions 1-2 and (A). Then for all λ we have

$$
\int \chi_{1} \cdots \chi_{n} e^{-S_{E}} \mathscr{D} x \mathscr{D} \psi=\int \chi_{1} \cdots \chi_{n} e^{-S_{E}-\lambda \delta V} \mathscr{D} x \mathscr{D} \psi
$$

where V is a deformation satisfying conditions (B)-(C).

- The new localization principle is the following statement.
- Let S_{E} be the Euclidean action of the supersymmetric theory with fermion zero modes $\chi_{1}, \ldots, \chi_{n}$ satisfying conditions 1-2 and (A). Then for all λ we have

$$
\int \chi_{1} \cdots \chi_{n} e^{-S_{E}} \mathscr{D} x \mathscr{D} \psi=\int \chi_{1} \cdots \chi_{n} e^{-S_{E}-\lambda \delta V} \mathscr{D} x \mathscr{D} \psi
$$

where V is a deformation satisfying conditions (B)-(C).

- If bosonic and fermionic degrees of freedom decouple

$$
\mathscr{H}=\mathscr{H}_{B} \otimes \mathscr{H}_{F} \quad \text { and } \quad \hat{H}=\hat{H}_{B} \otimes I_{F}+I_{B} \otimes \hat{H}_{F}
$$

then

$$
\operatorname{Str} \hat{\chi}_{1} \cdots \hat{\chi}_{n} e^{-\beta \hat{H}}=2^{-n / 2} \operatorname{Tr}_{\mathscr{H}_{F}} e^{-\beta \hat{H}_{F}} \cdot \operatorname{Tr}_{\mathscr{H}_{B}} e^{-\beta \hat{H}}
$$

- The new localization principle is the following statement.
- Let S_{E} be the Euclidean action of the supersymmetric theory with fermion zero modes $\chi_{1}, \ldots, \chi_{n}$ satisfying conditions 1-2 and (A). Then for all λ we have

$$
\int \chi_{1} \cdots \chi_{n} e^{-S_{E}} \mathscr{D} x \mathscr{D} \psi=\int \chi_{1} \cdots \chi_{n} e^{-S_{E}-\lambda \delta V} \mathscr{D} x \mathscr{D} \psi
$$

where V is a deformation satisfying conditions (B)-(C).

- If bosonic and fermionic degrees of freedom decouple

$$
\mathscr{H}=\mathscr{H}_{B} \otimes \mathscr{H}_{F} \quad \text { and } \quad \hat{H}=\hat{H}_{B} \otimes I_{F}+I_{B} \otimes \hat{H}_{F}
$$

then

$$
\operatorname{Str} \hat{\chi}_{1} \cdots \hat{\chi}_{n} e^{-\beta \hat{H}}=2^{-n / 2} \operatorname{Tr}_{\mathscr{H}_{F}} e^{-\beta \hat{H}_{F}} \cdot \operatorname{Tr}_{\mathscr{H}_{B}} e^{-\beta \hat{H}}
$$

- If $\hat{H}_{F}=0$, we have

$$
\operatorname{Str} \hat{\chi}_{1} \cdots \hat{\chi}_{n} e^{-\beta \hat{H}}=\operatorname{Tr}_{\mathscr{H}}^{B} \text { } e^{-\beta \hat{H}_{B}}
$$

Thus we obtain a pure bosonic trace formula by localizing the supersymmetric path integral in the limit $\lambda \rightarrow \infty$ to the zero locus of V.

III. Examples

1. Poisson summation formula: localization on $U(1)$

- Free supersymmetric particle of mass $m=1$ on $S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$ with the Lagrangian, the real supercharge

$$
\mathcal{L}=\frac{1}{2}\left(\dot{x}^{2}+i \psi \dot{\psi}\right), \quad Q=i \dot{x} \psi
$$

and the Hamiltonian

$$
H=\frac{1}{2 i}\{Q, Q\}=\frac{1}{2} p^{2} .
$$

III. Examples

1. Poisson summation formula: localization on $\mathrm{U}(1)$

- Free supersymmetric particle of mass $m=1$ on $S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$ with the Lagrangian, the real supercharge

$$
\mathcal{L}=\frac{1}{2}\left(\dot{x}^{2}+i \psi \dot{\psi}\right), \quad Q=i \dot{x} \psi
$$

and the Hamiltonian

$$
H=\frac{1}{2 i}\{Q, Q\}=\frac{1}{2} p^{2} .
$$

- The Witten index I is zero due to the presence of the fermion zero mode

$$
\chi=\frac{1}{\beta} \int_{0}^{\beta} \psi(t) d t
$$

III. Examples

1. Poisson summation formula: localization on $\mathrm{U}(1)$

- Free supersymmetric particle of mass $m=1$ on $S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$ with the Lagrangian, the real supercharge

$$
\mathcal{L}=\frac{1}{2}\left(\dot{x}^{2}+i \psi \dot{\psi}\right), \quad Q=i \dot{x} \psi
$$

and the Hamiltonian

$$
H=\frac{1}{2 i}\{Q, Q\}=\frac{1}{2} p^{2} .
$$

- The Witten index I is zero due to the presence of the fermion zero mode

$$
\chi=\frac{1}{\beta} \int_{0}^{\beta} \psi(t) d t
$$

- Quantum supercharge and the Hamiltonian operator are

$$
\hat{Q}=\psi P \quad \text { and } \quad \hat{H}=\frac{1}{2} \hat{Q}^{2}=\frac{1}{2} P^{2}
$$

- The partition function is

$$
Z(\beta)=\operatorname{Tr} e^{-\beta \hat{H}}=\sum_{n \in \mathbb{Z}} e^{-\beta n^{2} / 2}, \quad \beta>0 .
$$

- The partition function is

$$
Z(\beta)=\operatorname{Tr} e^{-\beta \hat{H}}=\sum_{n \in \mathbb{Z}} e^{-\beta n^{2} / 2}, \quad \beta>0 .
$$

- Using path integral,

$$
Z(\beta)=\operatorname{Str} \chi e^{-\beta \hat{H}}=\int_{\Pi T \mathcal{L}\left(S^{1}\right)} \chi e^{-S_{E}} \mathscr{D} x \mathscr{D} \psi
$$

- The partition function is

$$
Z(\beta)=\operatorname{Tr} e^{-\beta \hat{H}}=\sum_{n \in \mathbb{Z}} e^{-\beta n^{2} / 2}, \quad \beta>0 .
$$

- Using path integral,

$$
Z(\beta)=\operatorname{Str} \chi e^{-\beta \hat{H}}=\int_{\Pi T \mathcal{L}\left(S^{1}\right)} \chi e^{-S_{E}} \mathscr{D} x \mathscr{D} \psi
$$

- New localization principle: the path integral

$$
\int_{\Pi T \mathcal{L}\left(S^{1}\right)} \chi e^{-S_{E}+\lambda \delta V} \mathscr{D} x \mathscr{D} \psi,
$$

where

$$
V=\frac{1}{2} \int_{0}^{\beta} \ddot{x} \dot{\psi} d t, \quad \delta V=-\frac{1}{2} \int_{0}^{\beta}\left(\ddot{x}^{2}+\dot{\psi} \ddot{\psi}\right) d t
$$

does not depend on λ !

- The partition function is

$$
Z(\beta)=\operatorname{Tr} e^{-\beta \hat{H}}=\sum_{n \in \mathbb{Z}} e^{-\beta n^{2} / 2}, \quad \beta>0 .
$$

- Using path integral,

$$
Z(\beta)=\operatorname{Str} \chi e^{-\beta \hat{H}}=\int_{\Pi T \mathcal{L}\left(S^{1}\right)} \chi e^{-S_{E}} \mathscr{D} x \mathscr{D} \psi
$$

- New localization principle: the path integral

$$
\int_{\Pi T \mathcal{L}\left(S^{1}\right)} \chi e^{-S_{E}+\lambda \delta V} \mathscr{D} x \mathscr{D} \psi
$$

where

$$
V=\frac{1}{2} \int_{0}^{\beta} \ddot{x} \dot{\psi} d t, \quad \delta V=-\frac{1}{2} \int_{0}^{\beta}\left(\ddot{x}^{2}+\dot{\psi} \ddot{\psi}\right) d t
$$

does not depend on λ !

- In the limit $\lambda \rightarrow \infty$ the path integral localizes on the classical trajectories $\ddot{x}=0$, and one can compute $Z(\beta)$ exactly.
- Specifically, we obtain

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} e^{-n^{2} \beta / 2}=2 \pi \lim _{s \rightarrow \infty} \int_{\Pi T \Omega S^{1}} e^{-S_{E}-s \delta V} \mathscr{D}^{\prime} x \mathscr{D}^{\prime} \psi \\
& =2 \pi \cdot(2 \pi)^{\zeta(0)} \int_{\Pi T \Omega S^{1}} e^{-S_{E}} \delta(\ddot{x}) \delta(\psi) \operatorname{Pf}\left(\partial_{t}^{3}\right) \mathscr{D}^{\prime} x \mathscr{D}^{\prime} \psi \\
& =2 \pi \cdot(2 \pi)^{\zeta(0)} \int_{\Omega S^{1}} e^{-S_{E}[x, 0]} \sum_{x_{c l}} \frac{\delta\left(x-x_{c l}\right)}{\operatorname{det}\left(\partial_{t}^{2}\right)} \operatorname{Pf}\left(\partial_{t}^{3}\right) \mathscr{D}^{\prime} x \\
& =2 \pi \cdot(2 \pi)^{\zeta(0)} \sum_{x_{c l}} e^{-\frac{1}{2} \int_{0}^{\beta} \dot{x}_{c l}^{2} d t} \frac{\operatorname{Pf}\left(\partial_{t}^{3}\right)}{\operatorname{det}\left(\partial_{t}^{2}\right)} \\
& =\sqrt{\frac{2 \pi}{\beta}} \sum_{n=-\infty}^{\infty} e^{-2 \pi^{2} n^{2} / \beta}
\end{aligned}
$$

which is Jacobi inversion formula.

2. Eskin summation formula: localization on G

- This summation formula was first obtained by L.D. Eskin (Л.Д. Эскин "Уравнение теплопроводности на группах Ли", С6. памяти Н.Г. Чеботарева, Изд. КГУ, Казань, 1964; см. также Л.Д. Эскин "Уравнение теплопроводности в теории компактных групп", УМН, 19:2(116) (1964), 200-202), and rediscovered later by I. Frenkel and J.-M. Bismut.

2. Eskin summation formula: localization on G

- This summation formula was first obtained by L.D. Eskin (Л.Д. Эскин "Уравнение теплопроводности на группах Ли", Сб. памяти Н.Г. Чеботарева, Изд. КГУ, Казань, 1964; см. также Л.Д. Эскин "Уравнение теплопроводности в теории компактных групп", УМН, 19:2(116) (1964), 200-202), and rediscovered later by I. Frenkel and J.-M. Bismut.
- $0+1$ supersymmetric sigma model - supersymmetric particle on compact simple Lie group G with the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\langle\dot{x}, \dot{x}\rangle+\frac{i}{2}\left\langle\boldsymbol{\psi}, \nabla_{\dot{x}}^{-} \boldsymbol{\psi}\right\rangle, \quad \boldsymbol{\psi} \in \Pi T_{x(t)} G,
$$

where ∇^{-}is flat left-invariant connection on G (with torsion).

2. Eskin summation formula: localization on G

- This summation formula was first obtained by L.D. Eskin (Л.Д. Эскин "Уравнение теплопроводности на группах Ли", Сб. памяти Н.Г. Чеботарева, Изд. КГУ, Казань, 1964; см. также Л.Д. Эскин "Уравнение теплопроводности в теории компактных групп", УМН, 19:2(116) (1964), 200-202), and rediscovered later by I. Frenkel and J.-M. Bismut.
- $0+1$ supersymmetric sigma model - supersymmetric particle on compact simple Lie group G with the Lagrangian

$$
\mathcal{L}=\frac{1}{2}\langle\dot{x}, \dot{x}\rangle+\frac{i}{2}\left\langle\boldsymbol{\psi}, \nabla_{\dot{x}}^{-} \boldsymbol{\psi}\right\rangle, \quad \boldsymbol{\psi} \in \Pi T_{x(t)} G,
$$

where ∇^{-}is flat left-invariant connection on G (with torsion).

- In Cartan moving frame formalism $J=g^{-1} \dot{g} \in \mathfrak{g}$ and $\psi=L_{g^{-1}} \psi \in \Pi \mathfrak{g}$, where \mathfrak{g} is the Lie algebra of G and

$$
\mathcal{L}=\frac{1}{2}\langle J, J\rangle+\frac{i}{2}\langle\psi, \dot{\psi}\rangle .
$$

- Real supercharge

$$
Q=\langle\psi, J\rangle+\frac{i}{6}\langle\psi,[\psi, \psi]\rangle
$$

and classical Hamiltonian

$$
H=\frac{1}{2 i}\{Q, Q\}=\frac{1}{2} g^{a b} l_{a} l_{b}
$$

with the Dirac brackets on the reduced phase space

$$
\left\{p_{\mu}, x^{\nu}\right\}=\delta_{\mu}^{\nu} \quad \text { and } \quad\left\{\psi^{a}, \psi^{b}\right\}=i g^{a b}
$$

- Real supercharge

$$
Q=\langle\psi, J\rangle+\frac{i}{6}\langle\psi,[\psi, \psi]\rangle
$$

and classical Hamiltonian

$$
H=\frac{1}{2 i}\{Q, Q\}=\frac{1}{2} g^{a b} l_{a} l_{b}
$$

with the Dirac brackets on the reduced phase space

$$
\left\{p_{\mu}, x^{\nu}\right\}=\delta_{\mu}^{\nu} \quad \text { and } \quad\left\{\psi^{a}, \psi^{b}\right\}=i g^{a b}
$$

- Quantization $\mathscr{H}=L^{2}(G) \otimes \mathscr{H}_{F}$,

$$
\left[\hat{\psi}^{a}, \hat{\psi}^{b}\right]=g^{a b},\left[\hat{l}_{a}, \hat{l}_{a}\right]=-i f_{a b}^{c} \hat{l}_{c} \text { and } \hat{Q}=\hat{\psi}^{a} \hat{l}_{a}+\frac{i}{6} f_{a b c} \hat{\psi}^{a} \hat{\psi}^{b} \hat{\psi}^{c}
$$

- Real supercharge

$$
Q=\langle\psi, J\rangle+\frac{i}{6}\langle\psi,[\psi, \psi]\rangle
$$

and classical Hamiltonian

$$
H=\frac{1}{2 i}\{Q, Q\}=\frac{1}{2} g^{a b} l_{a} l_{b}
$$

with the Dirac brackets on the reduced phase space

$$
\left\{p_{\mu}, x^{\nu}\right\}=\delta_{\mu}^{\nu} \quad \text { and } \quad\left\{\psi^{a}, \psi^{b}\right\}=i g^{a b}
$$

- Quantization $\mathscr{H}=L^{2}(G) \otimes \mathscr{H}_{F}$,

$$
\left[\hat{\psi}^{a}, \hat{\psi}^{b}\right]=g^{a b},\left[\hat{l}_{a}, \hat{l}_{a}\right]=-i f_{a b}^{c} \hat{l}_{c} \text { and } \hat{Q}=\hat{\psi}^{a} \hat{l}_{a}+\frac{i}{6} f_{a b c} \hat{\psi}^{a} \hat{\psi}^{b} \hat{\psi}^{c} .
$$

- Hamiltonian operator $\hat{H}=\hat{Q}^{2}$ is given by

$$
\hat{H}=\frac{1}{2} g^{a b} \hat{l}_{a} \hat{l}_{b}+\frac{1}{48} f_{a b c} f^{a b c} \hat{I}=\frac{1}{2} \Delta+\frac{R}{12} \hat{I}
$$

where Δ is the Laplace operator on $L^{2}(G)$ and the second term is the 'notorious' DeWitt term.

- Fermion zero modes

$$
\chi^{a}=\frac{1}{\beta} \int_{0}^{\beta} \psi^{a} d t
$$

SO

$$
\operatorname{Str} \hat{\chi}^{1} \ldots \hat{\chi}^{n} e^{-\beta \hat{H}}=e^{-\frac{1}{12} \beta R} \operatorname{Tr} e^{-\frac{1}{2} \beta \Delta}
$$

and

$$
\operatorname{Str} \hat{\chi}^{1} \ldots \hat{\chi}^{n} e^{-\beta \hat{H}+i\langle h, \hat{r}\rangle}=V_{G} e^{-\frac{1}{12} \beta R} K_{\beta}\left(e^{h}\right)
$$

where K_{β} is the heat kernel, $\hat{r}=\hat{r}^{a} T_{a}$ and $h \in \mathfrak{t}$.

- Fermion zero modes

$$
\chi^{a}=\frac{1}{\beta} \int_{0}^{\beta} \psi^{a} d t
$$

so

$$
\operatorname{Str} \hat{\chi}^{1} \ldots \hat{\chi}^{n} e^{-\beta \hat{H}}=e^{-\frac{1}{12} \beta R} \operatorname{Tr} e^{-\frac{1}{2} \beta \Delta}
$$

and

$$
\operatorname{Str} \hat{\chi}^{1} \ldots \hat{\chi}^{n} e^{-\beta \hat{H}+i\langle h, \hat{r}\rangle}=V_{G} e^{-\frac{1}{12} \beta R} K_{\beta}\left(e^{h}\right)
$$

where K_{β} is the heat kernel, $\hat{r}=\hat{r}^{a} T_{a}$ and $h \in \mathfrak{t}$.

- Path integral representation

$$
\operatorname{Str} \hat{\chi}^{1} \ldots \hat{\chi}^{n} e^{-\beta \hat{H}+i\langle h, \hat{r}\rangle}=\int_{\Pi T L G} \chi^{1} \ldots \chi^{n} e^{-S_{E}^{h}} \mathscr{D} g \mathscr{D} \psi
$$

where

$$
S_{E}^{h}=\frac{1}{2} \int_{0}^{\beta}(\langle J, J\rangle+\langle\psi, \dot{\psi}\rangle) d t+\frac{1}{\beta} \int_{0}^{\beta}\left\langle\operatorname{Ad}_{g^{-1}} h, J\right\rangle d t
$$

- The supersymmetric deformation is

$$
V=-\frac{1}{2} \int_{0}^{\beta}\left\langle\dot{J}^{h}, \dot{\psi}\right\rangle d t
$$

where

$$
J^{h}=J+\frac{1}{\beta} \operatorname{Ad}_{g^{-1}} h
$$

- The supersymmetric deformation is

$$
V=-\frac{1}{2} \int_{0}^{\beta}\left\langle\dot{J}^{h}, \dot{\psi}\right\rangle d t
$$

where

$$
J^{h}=J+\frac{1}{\beta} \operatorname{Ad}_{g^{-1}} h
$$

- According to the new localization principle

$$
\int_{\Pi T L G} \chi^{1} \ldots \chi^{n} e^{-S_{E}^{h}} \mathscr{D} g \mathscr{D} \psi=\int_{\Pi T L G} \chi^{1} \ldots \chi^{n} e^{-S_{E}^{h}-\lambda \delta_{h} V} \mathscr{D} g \mathscr{D} \psi
$$

and as $\lambda \rightarrow \infty$ the integral localizes to the classical solutions, the zero locus $\dot{J}^{h}=0$.

- The supersymmetric deformation is

$$
V=-\frac{1}{2} \int_{0}^{\beta}\left\langle\dot{J}^{h}, \dot{\psi}\right\rangle d t
$$

where

$$
J^{h}=J+\frac{1}{\beta} \operatorname{Ad}_{g^{-1}} h
$$

- According to the new localization principle

$$
\int_{\Pi T L G} \chi^{1} \cdots \chi^{n} e^{-S_{E}^{h}} \mathscr{D} g \mathscr{D} \psi=\int_{\Pi T L G} \chi^{1} \cdots \chi^{n} e^{-S_{E}^{h}-\lambda \delta_{h} V} \mathscr{D} g \mathscr{D} \psi
$$

and as $\lambda \rightarrow \infty$ the integral localizes to the classical solutions, the zero locus $\dot{J}^{h}=0$.

- When $h \in \mathfrak{t}$ is regular, on ΩG solutions are isolated geodesics and one computes the supertrace

$$
\begin{gathered}
\operatorname{Str} \hat{\chi}^{1} \ldots \hat{\chi}^{n} e^{-\beta \hat{H}+i\langle h, \hat{r}\rangle} \\
=\frac{V_{G}}{(2 \pi \beta)^{n / 2}} \sum_{\gamma \in \Gamma} \prod_{\alpha \in R_{+}} \frac{\frac{1}{2}\langle\alpha, h+\gamma\rangle}{\sin \frac{1}{2}\langle\alpha, h+\gamma\rangle} e^{-\frac{1}{2 \beta}\langle h+\gamma, h+\gamma\rangle}
\end{gathered}
$$

and we obtain the Eskin formula for the heat kernel

$$
K_{\beta}\left(e^{h}\right)=\frac{e^{\frac{1}{2} \beta\langle\rho, \rho\rangle}}{(2 \pi \beta)^{n / 2}} \sum_{\gamma \in \Gamma} \prod_{\alpha \in R_{+}} \frac{\frac{1}{2}\langle\alpha, h+\gamma\rangle}{\sin \frac{1}{2}\langle\alpha, h+\gamma\rangle} e^{-\frac{1}{2 \beta}\langle h+\gamma, h+\gamma\rangle},
$$

where $\Gamma=\left\{\gamma \in \mathfrak{t}: e^{\gamma}=1\right\}$ is the characteristic lattice, which is related to the maximal torus by $T=\mathfrak{t} / \Gamma$.

$$
\begin{gathered}
\operatorname{Str} \hat{\chi}^{1} \ldots \hat{\chi}^{n} e^{-\beta \hat{H}+i\langle h, \hat{r}\rangle} \\
=\frac{V_{G}}{(2 \pi \beta)^{n / 2}} \sum_{\gamma \in \Gamma} \prod_{\alpha \in R_{+}} \frac{\frac{1}{2}\langle\alpha, h+\gamma\rangle}{\sin \frac{1}{2}\langle\alpha, h+\gamma\rangle} e^{-\frac{1}{2 \beta}\langle h+\gamma, h+\gamma\rangle}
\end{gathered}
$$

and we obtain the Eskin formula for the heat kernel

$$
K_{\beta}\left(e^{h}\right)=\frac{e^{\frac{1}{2} \beta\langle\rho, \rho\rangle}}{(2 \pi \beta)^{n / 2}} \sum_{\gamma \in \Gamma} \prod_{\alpha \in R_{+}} \frac{\frac{1}{2}\langle\alpha, h+\gamma\rangle}{\sin \frac{1}{2}\langle\alpha, h+\gamma\rangle} e^{-\frac{1}{2 \beta}\langle h+\gamma, h+\gamma\rangle},
$$

where $\Gamma=\left\{\gamma \in \mathfrak{t}: e^{\gamma}=1\right\}$ is the characteristic lattice, which is related to the maximal torus by $T=\mathfrak{t} / \Gamma$.

- Comparing with the spectral representation

$$
K_{\beta}\left(e^{h}\right)=\frac{1}{V_{G}} \sum_{\pi \in \text { Irrep } G} d_{\pi} \chi_{\pi}(h) e^{-\frac{1}{2} \beta C_{2}(\pi)}
$$

we obtain Eskin summation formula.

3. Selberg trace formula: localization on $\Gamma \backslash G / K$

Example: $G=\mathrm{SL}(2, \mathbb{R}), K=\mathrm{SO}(2)$ and Γ is a discrete subgroup of G containing $-I$, so $X=\Gamma \backslash G / K$ is compact hyperbolic Riemann surface (with orbifold points).

- Supersymmetric sigma model on $\Gamma \backslash G$

$$
\mathcal{L}=\frac{1}{2}\langle J, J\rangle+\frac{i}{2}\langle\psi, \dot{\psi}\rangle
$$

in Lorentzian time $0 \leq t \leq T$, using Cartan frame formalism
$J=g^{-1} \dot{g}$ and $\psi=L_{g}^{-1} \psi ;$

$$
\delta g=i g \psi \quad \text { and } \quad \delta \psi=-J-i \psi \psi
$$

3. Selberg trace formula: localization on $\Gamma \backslash G / K$

Example: $G=\mathrm{SL}(2, \mathbb{R}), K=\mathrm{SO}(2)$ and Γ is a discrete subgroup of G containing $-I$, so $X=\Gamma \backslash G / K$ is compact hyperbolic Riemann surface (with orbifold points).

- Supersymmetric sigma model on $\Gamma \backslash G$

$$
\mathcal{L}=\frac{1}{2}\langle J, J\rangle+\frac{i}{2}\langle\psi, \dot{\psi}\rangle
$$

in Lorentzian time $0 \leq t \leq T$, using Cartan frame formalism $J=g^{-1} \dot{g}$ and $\psi=L_{g}^{-1} \boldsymbol{\psi} ;$

$$
\delta g=i g \psi \quad \text { and } \quad \delta \psi=-J-i \psi \psi
$$

- The Hilbert space is

$$
\mathscr{H}_{\Gamma \backslash G}=L^{2}(\Gamma \backslash G, d g) \otimes \mathscr{H}_{F, \mathfrak{g}}
$$

but we need the Hilbert space $L^{2}\left(X, d \mu_{\mathrm{hyp}}\right)$. It can be obtained by gauging the right K-symmetry $g \mapsto g k$ and $\psi \mapsto \operatorname{Ad}_{k^{-1}} \psi, k \in K$, by using a K-connection A in the principal bundle $K \rightarrow S_{T}^{1}=\mathbb{R} / T \mathbb{Z}$.

- Gauged sigma model on $\Gamma \backslash G$

$$
\mathcal{L}_{0}=\frac{1}{2}\left\langle J_{A}, J_{A}\right\rangle+\frac{i}{2}\left\langle\psi, \partial_{t}^{A} \psi\right\rangle,
$$

where $J_{A}=J-A$ and $\partial_{t}^{A}=\partial_{t}+\operatorname{ad}_{A}$.

- Gauged sigma model on $\Gamma \backslash G$

$$
\mathcal{L}_{0}=\frac{1}{2}\left\langle J_{A}, J_{A}\right\rangle+\frac{i}{2}\left\langle\psi, \partial_{t}^{A} \psi\right\rangle,
$$

where $J_{A}=J-A$ and $\partial_{t}^{A}=\partial_{t}+\operatorname{ad}_{A}$.

- The supersymmetry is modified as

$$
\begin{aligned}
\delta g & =i g \psi \\
\delta \psi & =-J_{A}-i \psi \psi \\
\delta A & =0
\end{aligned}
$$

- Gauged sigma model on $\Gamma \backslash G$

$$
\mathcal{L}_{0}=\frac{1}{2}\left\langle J_{A}, J_{A}\right\rangle+\frac{i}{2}\left\langle\psi, \partial_{t}^{A} \psi\right\rangle,
$$

where $J_{A}=J-A$ and $\partial_{t}^{A}=\partial_{t}+\operatorname{ad}_{A}$.

- The supersymmetry is modified as

$$
\begin{aligned}
\delta g & =i g \psi \\
\delta \psi & =-J_{A}-i \psi \psi \\
\delta A & =0
\end{aligned}
$$

- Since the Lagrangian \mathcal{L}_{0} has no kinetic term for A, we have a classical Gauss law

$$
C_{0}: J_{A}^{3}+2 i \psi^{1} \psi^{2}=0,
$$

which is realized quantum mechanically as the constraint on the Hilbert space $\mathscr{H}_{\Gamma \backslash G}$.

- The main representation

$$
\begin{gathered}
Z(i T)=\operatorname{Tr}_{L^{2}(X)}\left[e^{-i T \Delta / 2}\right] \\
=\frac{e^{-\frac{i(\rho, \rho \rho) T}{2}}}{\operatorname{vol}(\mathcal{G})} \int \frac{1}{W_{-1}(A)-W_{1}(A)} \psi_{0}^{3} e^{i \int_{0}^{T} \mathcal{L}_{0} d t} \mathscr{D} g \mathscr{D} \psi \mathscr{D} A,
\end{gathered}
$$

where domain of integration is

$$
L(\Gamma \backslash G) \times \Pi L \mathfrak{g} \times \mathcal{A}
$$

Here \mathcal{G} is the gauge group, t_{1}, t_{2}, t_{3} are generators of $\mathfrak{g}, t_{3}-$ generator of $\mathfrak{k}, A=A^{3} t_{3}$,

$$
\psi_{0}^{3}=\frac{1}{T} \int_{0}^{T} \psi^{3}(t) d t
$$

is fermion zero mode and

$$
W_{ \pm 1}(A)=e^{ \pm i \int_{0}^{T} A^{3}(t) d t}
$$

are Wilson lines.

- Connected components of the free loop space $L(\Gamma \backslash G)$ are parametrized by the conjugacy classes $[\gamma]$ of the elements $\gamma \in \Gamma$, and we obtain the 'pre-trace' formula

$$
Z(i T)=\sum_{[\gamma]} Z_{[\gamma]}(i T)
$$

where 'orbital integrals' $Z_{[\gamma]}(i T)$ are expressed by path integrals over the space of paths in G connecting points points g and γg, integrated over $G_{\gamma} \backslash G$.

- Connected components of the free loop space $L(\Gamma \backslash G)$ are parametrized by the conjugacy classes $[\gamma]$ of the elements $\gamma \in \Gamma$, and we obtain the 'pre-trace' formula

$$
Z(i T)=\sum_{[\gamma]} Z_{[\gamma]}(i T)
$$

where 'orbital integrals' $Z_{[\gamma]}(i T)$ are expressed by path integrals over the space of paths in G connecting points points g and γg, integrated over $G_{\gamma} \backslash G$.

- The new supersymmetric localization principle allows to compute explicitly each orbital integral in the pre-trace formula in the limit $\lambda \rightarrow \infty$.
- Connected components of the free loop space $L(\Gamma \backslash G)$ are parametrized by the conjugacy classes $[\gamma]$ of the elements $\gamma \in \Gamma$, and we obtain the 'pre-trace' formula

$$
Z(i T)=\sum_{[\gamma]} Z_{[\gamma]}(i T)
$$

where 'orbital integrals' $Z_{[\gamma]}(i T)$ are expressed by path integrals over the space of paths in G connecting points points g and γg, integrated over $G_{\gamma} \backslash G$.

- The new supersymmetric localization principle allows to compute explicitly each orbital integral in the pre-trace formula in the limit $\lambda \rightarrow \infty$.
- We have $Z_{[\gamma]}(i T)=Z_{[-\gamma]}(i T)$; computing $Z_{[\gamma]}(i T)$ for the identity, hyperbolic and elliptic elements, and performing the Wick rotation $T \mapsto-i \beta$, we obtain the Selberg trace formula (with exact match of all coefficients)!

Рис.: Тянджинь, Нанкай, 1989

Рис.: Вена, 2004

Рис.: Женева, 2009

Happy Birthday, Fedya!

