Boundary overlaps for the open spin chains

N. Kitanine

IMB, Université de Bourgogne

Integrable systems and field theory
Fedor Smirnov 65th birthday Paris 2023

12 October 2023

work in progress in collaboration with C. Abetian and V. Terras

also based on paper in collaboration with G. Kulkarni SciPost Phys. 6, 076 (2019)
The XXZ spin-1/2 Heisenberg chain

1. Periodic chain.

Hamiltonian

\[H_{\text{bulk}} = \sum_{m=1}^{L} \left(\sigma_m^x \sigma_{m+1}^x + \sigma_m^y \sigma_{m+1}^y + \Delta \left(\sigma_m^z \sigma_{m+1}^z - 1 \right) \right) \]

\[\Delta = \cosh \zeta \] - anisotropy

Periodic boundary conditions: \(\sigma_{L+1} = \sigma_1 \).

2. Open chain.

\[H = \sum_{m=1}^{L-1} \left(\sigma_m^x \sigma_{m+1}^x + \sigma_m^y \sigma_{m+1}^y + \Delta \left(\sigma_m^z \sigma_{m+1}^z - 1 \right) \right) + h_- \sigma_1^- + h_+ \sigma_L^+ \]

\(h_\pm \) - boundary fields.

We consider \(\Delta > 1 \) - massive antiferromagnetic regime, \(\Delta = \cosh \zeta \)
Form Factors

The main question: systematic computation of the form-factors in the thermodynamic limit from the Algebraic Bethe ansatz

Form factors: matrix elements of local fields, local spin operators $\sigma^a_m, a = x, y, z$

$|\Psi_g\rangle$ the ground state of the model $|\Psi_e\rangle$ - an excited state

The most basic form factors

$$|\mathcal{F}_a(\Psi_e)|^2 = \frac{\langle \Psi_g | \sigma^a_m | \Psi_e \rangle \langle \Psi_e | \sigma^a_m | \Psi_g \rangle}{\langle \Psi_g | \Psi_g \rangle \langle \Psi_e | \Psi_e \rangle}$$
Boundary overlaps

Quench: dynamics of a system after abrupt change of one parameter.

We change **one** boundary field $h_- \rightarrow \tilde{h}_-$. Local change, but can drastically modify the ground state (globally).

$|\Psi\rangle$ the ground state before the change of field $|\tilde{\Psi}\rangle$ - ground state after the change of field.

The most basic overlap (gives for example the dominant term for the Loschmidt echo): scalar product of ground states.

$$|\mathcal{F}|^2 = \frac{\langle \Psi | \tilde{\Psi} \rangle \langle \tilde{\Psi} | \Psi \rangle}{\langle \Psi | \Psi \rangle \langle \tilde{\Psi} | \tilde{\Psi} \rangle}$$
XXZ chain: Algebraic Bethe ansatz

\[T_a(\lambda) = \begin{pmatrix} A(\lambda) & B(\lambda) \\ C(\lambda) & D(\lambda) \end{pmatrix}. \]

- Diagonal elements \(\rightarrow\) commuting conserved charges: transfer matrix

\[\mathcal{T}(\lambda) = \text{tr}_a T_a(\lambda) = A(\lambda) + D(\lambda), \quad [\mathcal{T}(\lambda), \mathcal{T}(\mu)] = 0 \]

- Hamiltonian:

\[H = c \frac{\partial}{\partial \lambda} \log \mathcal{T}(\lambda) \bigg|_{\lambda = \frac{i\zeta}{2}}, \quad [H, \mathcal{T}(\lambda)] = 0 \]

- Non-diagonal elements \(\rightarrow\) creation/annihilation operators.
Bethe states

Ferromagnetic state: \(|0\rangle = |\uparrow\uparrow \ldots \uparrow\rangle\), \(A(\lambda) \vert 0\rangle = a(\lambda) \vert 0\rangle\), \(D(\lambda) \vert 0\rangle = d(\lambda) \vert 0\rangle\).

Off-shell Bethe states: \(|\Psi(\{\lambda_1, \ldots, \lambda_N\})\rangle = B(\lambda_1) \ldots B(\lambda_N) \vert 0\rangle\).

For any Bethe state we define Baxter polynomial and exponential counting function

\[q(\lambda) = \prod_{j=1}^{N} \sin(\lambda - \lambda_j), \quad a(\lambda) = \frac{a(\lambda) q(\lambda + i\zeta)}{d(\lambda) q(\lambda - i\zeta)}. \]

if the Bethe equations are satisfied (on-shell Bethe state)

\[a(\lambda_j) + 1 = 0, \quad j = 1, \ldots N \]

then it is an eigenstate of the transfer matrix and the Hamiltonian

\[\mathcal{T}(\mu) \vert \Psi(\{\lambda\})\rangle = \tau(\mu) \vert \Psi(\{\lambda\})\rangle, \quad \tau(\mu) = (a(\mu) + 1) \frac{q(\mu - i\zeta)}{q(\mu)}. \]
Open spin chain, Algebraic Bethe ansatz

Boundary matrices satisfying reflection equation (Cherednik 1984)

\[R_{12}(\lambda - \mu) K_1(\lambda) R_{12}(\lambda + \mu) K_2(\mu) = K_2(\mu) R_{12}(\lambda + \mu) K_1(\lambda) R_{12}(\lambda - \mu). \]

We consider only diagonal solution: \(K(\lambda) = \begin{pmatrix} \sinh(\lambda + \xi - i\zeta/2) & 0 \\ 0 & \sinh(\xi - \lambda - i\zeta/2) \end{pmatrix}, \)

Algebraic Bethe Ansatz, Sklyanin 1988, Double row monodromy matrices:

\(T(\lambda) \)-usual monodromy matrix, \(\hat{T}(\lambda) = \sigma_0^y T^{t_0}(-\lambda) \sigma_0^y \) returned monodromy matrix.

\(\mathcal{U}_-(\lambda) = T(\lambda) K_-(\lambda) \hat{T}(\lambda) = \begin{pmatrix} \mathcal{A}_-(\lambda) & \mathcal{B}_-(\lambda) \\ \mathcal{C}_-(\lambda) & \mathcal{D}_-(\lambda) \end{pmatrix}, \)

\(\mathcal{U}^{t_0}_+(\lambda) = T^{t_0}(\lambda) K^{t_0}_+(\lambda) \hat{T}^{t_0}(-\lambda) = \begin{pmatrix} \mathcal{A}_+(\lambda) & \mathcal{C}_+(\lambda) \\ \mathcal{B}_+(\lambda) & \mathcal{D}_+(\lambda) \end{pmatrix}, \)
Algebraic Bethe Ansatz, open chain

1. Transfer matrix:

\[\mathcal{T}(\lambda) = \text{tr}_0\{ K_+(\lambda) U_-(\lambda) \} = \text{tr}_0\{ K_-(\lambda) U_+(\lambda) \}. \]

\[[\mathcal{T}(\lambda), \mathcal{T}(\mu)] = 0 \]

2. Hamiltonian:

\[H = c \frac{d}{d\lambda} \mathcal{T}(\lambda) \bigg|_{\lambda = -i\zeta/2} + \text{constant}. \]

\[h_\pm = -\sinh \zeta \coth \xi_\pm \]

3. Bethe states, Baxter polynomials:

\[|\psi_+ (\{\lambda\})\rangle = \prod_{k=1}^{N} B_+ (\lambda_j)|0\rangle \text{, } \]

\[Q(\lambda) = \prod_{j=1}^{N} \sin(\lambda - \lambda_j) \sin(\lambda + \lambda_j) \]

Note: operators \(B_+(\lambda) \) don’t depend on \(h_- \).
Bethe equations

Counting function

\[\mathcal{A}(\lambda) = \frac{a(\lambda)d(-\lambda)\sin(\lambda + i\xi + i\zeta/2)\sin(\lambda + i\xi + i\zeta/2)}{d(\lambda)a(-\lambda)\sin(\lambda + i\xi - i\zeta/2)\sin(\lambda + i\xi - i\zeta/2)} Q(\lambda + i\zeta) Q(\lambda - i\zeta) \]

if the parameters \(\lambda \) satisfy the Bethe equations:

\[\mathcal{A}(\lambda_j) = 1 \]

\(|\psi_+({\lambda})\rangle \) is an eigenstate of the transfer matrix \(\mathcal{T}(\mu) \):

\[\mathcal{T}(\mu) |\psi_+({\lambda})\rangle = \tau(\mu, \{\lambda_j\}) |\psi_+({\lambda})\rangle, \]

\[\tau(\mu) = \left(\mathcal{A}(\mu) \frac{\sin(2\mu + i\zeta)}{\sin(2\mu - i\zeta)} + 1 \right) \frac{Q(\mu - i\zeta)}{Q(\mu)}. \]
Scalar products and norms, periodic case

N. Slavnov, 1989: \(\{\lambda_1, \ldots \lambda_N\} \) - solution of Bethe equations, \(\{\mu_1, \ldots \mu_N\} \) - generic

\[
\langle \Psi(\{\mu\}) | \Psi(\{\lambda\}) \rangle = \frac{\prod_{k=1}^{N} q(\mu_k - i\zeta)}{\prod_{j>k} \sin(\lambda_j - \lambda_k) \sin(\mu_k - \mu_j)} \det M(\{\lambda\}|\{\mu\}),
\]

\[
M_{j,k}(\{\lambda\}|\{\mu\}) = a(\mu_k) t(\lambda_j - \mu_k) - t(\mu_k - \lambda_j), \quad t(\lambda) = \frac{i \sinh \zeta}{\sin \lambda \sin(\lambda - i\zeta)}.
\]

Norms of the on-shell Bethe states are given by the Gaudin formula

\[
\langle \Psi(\{\lambda\}) | \Psi(\{\lambda\}) \rangle = (-1)^N \frac{\prod_{j=1}^{N} q(\lambda_j - i\zeta)}{\prod_{j \neq k} \sin(\lambda_j - \lambda_k)} \det \mathcal{N}(\{\lambda\}),
\]

\[
\mathcal{N}_{j,k}(\{\lambda\}) = a'(\lambda_j) \delta_{j,k} - K(\lambda_j - \lambda_k), \quad K(\lambda) = t(\lambda) + t(-\lambda).
\]
Computation of determinants

N.K. Maillet Terras '99: quantum inverse problem, we know that the computation of form factors can be reduced to the scalar products.

\[
S(\{\lambda\}|\{\mu\}) \equiv \frac{\langle \Psi(\{\mu\}) | \Psi(\{\lambda\}) \rangle \langle \Psi(\{\lambda\}) | \Psi(\{\mu\}) \rangle}{\langle \Psi(\{\lambda\}) | \Psi(\{\lambda\}) \rangle \langle \Psi(\{\mu\}) | \Psi(\{\mu\}) \rangle} = \prod_{j=1}^{N} \frac{q_{\lambda}(\mu_j)q_{\mu}(\lambda_j)}{q_{\lambda}(\lambda_j)q_{\mu}(\mu_j)} \cdot \frac{\det \mathcal{M}(\{\lambda\}|\{\mu\}) \det \mathcal{M}(\{\mu\}|\{\lambda\})}{\det \mathcal{N}(\{\lambda\}) \det \mathcal{N}(\{\mu\})}.
\]

The main idea is extremely simple: we compute the following matrices from a system of linear equations

\[
F_{\lambda} = \mathcal{N}^{-1}(\{\lambda\}) \mathcal{M}(\{\lambda\}|\{\mu\}), \quad F_{\mu} = \mathcal{N}^{-1}(\{\mu\}) \mathcal{M}(\{\mu\}|\{\lambda\}),
\]

\[
a'_{\lambda}(\lambda_j)F_{\lambda,j,k} - \sum_{a=1}^{N} K(\lambda_j - \lambda_a)F_{\lambda,a,k} = a_{\lambda}(\mu_k)t(\lambda_j - \mu_k) - t(\mu_k - \lambda_j).
\]
We set

\[a'_\lambda(\lambda_j)F_{\lambda,j,k} = G_\lambda(\lambda_j; \mu_k) \]

Linear equations \(\rightarrow\) Contour integral equation for a meromorphic function \(G_\lambda(\lambda; \mu)\)

\[
G_\lambda(\lambda; \mu_k) - \frac{1}{2\pi i} \oint_{\Gamma} d\nu \frac{K(\lambda - \nu)G_\lambda(\nu; \mu_k)}{1 + a_\lambda(\nu)} = (a_\lambda(\mu_k) + 1)t(\lambda - \mu_k),
\]
We set

$$G_\lambda(\lambda; \mu) = (1 + a_\lambda(\mu)) \rho_\lambda(\lambda; \mu)$$

Thermodynamic limit \rightarrow Integral equation

$$\rho_\lambda(\lambda; \mu) + \frac{1}{2\pi\imath} \int_{-\pi/2+i0}^{\pi/2+i0} d\nu \, K(\lambda - \nu) \rho_\lambda(\nu; \mu) = t(\lambda - \mu).$$

Lieb equation for the density of Bethe roots! \rightarrow **elliptic Cauchy determinant**

$$F_{\lambda, j, k} = \frac{a_\lambda(\mu_k) + 1}{a'_\lambda(\lambda_j)} \cdot \frac{(q^2, q^2)_\infty}{(-q^2, q^2)_\infty} \cdot \frac{\vartheta_2(\mu_k - \lambda_j, q)}{\vartheta_1(\mu_k - \lambda_j, q)}, \quad q = e^{-\zeta}$$
XXX case: 2-spinon form factor

N.K. G. Kulkarni '19: Matrix element of σ_z between the ground state of the XXX chain and a state with 2 holes (spinons) μ_{h_1} and μ_{h_2}

Final result for the form factor:

$$|\mathcal{Y}(\mu_{h_1} - \mu_{h_2})|^2 = \lim_{M \to \infty} M^2 |\mathcal{F}_z|^2 = \frac{2}{G^4 \left(\frac{1}{2}\right)} \left| \frac{G \left(\frac{\mu_{h_1} - \mu_{h_2}}{2i}\right) G \left(1 + \frac{\mu_{h_1} - \mu_{h_2}}{2i}\right)}{G \left(\frac{1}{2} + \frac{\mu_{h_1} - \mu_{h_2}}{2i}\right) G \left(\frac{3}{2} + \frac{\mu_{h_1} - \mu_{h_2}}{2i}\right)} \right|^2.$$

Where $G(z)$ is the Barnes G-function (related to the double Γ-function).

$$G(z + 1) = \Gamma(z)G(z), \quad G(1) = 1.$$

This reproduces the result for the two-spinon form factor obtained in the q-vertex operator framework from the M. Jimbo and T. Miwa multiple integral formulas by A. H. Bougourzi, M. Couture and M. Kacir.
Open chain: scalar products and norms

\[S(\{\lambda\}|\{\mu\}) \equiv \frac{\langle \Psi(\{\mu\})|\Psi(\{\lambda\})\rangle \langle \Psi(\{\lambda\})|\Psi(\{\mu\})\rangle}{\langle \Psi(\{\lambda\})|\Psi(\{\lambda\})\rangle \langle \Psi(\{\mu\})|\Psi(\{\mu\})\rangle} \]

\[= \prod_{j=1}^{N} \frac{Q_\lambda(\mu_j)Q_\mu(\lambda_j)}{Q_\lambda(\lambda_j)Q_\mu(\mu_j)} \cdot \frac{\det \mathcal{M}(\{\lambda\}|\{\mu\}) \det \mathcal{M}(\{\mu\}|\{\lambda\})}{\det \mathcal{N}(\{\lambda\}), \det \mathcal{N}(\{\mu\})}. \]

Slavnov matrix:

\[\mathcal{M}_{j,k}(\{\lambda\}|\{\mu\}) = \mathfrak{A}_\lambda(\mu_k)t\left((-\mu_j + \lambda_j) - t(-\mu_k - \lambda_j)\right) + t(\mu_k - \lambda_j) - t(\mu_k + \lambda_j), \]

Gaudin matrix

\[\mathcal{N}_{j,k}(\{\lambda\}) = \mathfrak{A}_\lambda'(\lambda_j)\delta_{j,k} - K(\lambda_j - \lambda_k) + K(\lambda_j + \lambda_k) \]
Computation of determinants: open case

Same idea as in the periodic case

\[
F_\lambda = \mathcal{N}^{-1}(\{\lambda\}) \mathcal{M}(\{\lambda\} | \{\mu\}), \quad F_\mu = \mathcal{N}^{-1}(\{\mu\}) \mathcal{M}(\{\mu\} | \{\lambda\}),
\]

Linear equations \rightarrow Contour integral equation \rightarrow Linear integral equation

\[
\rho_\lambda(\lambda; \mu) + \frac{1}{2\pi i} \int_{-\pi/2+i0}^{\pi/2+i0} d\nu \, K(\lambda - \nu) \rho_\lambda(\nu; \mu) = t(\lambda - \mu) + t(\lambda + \mu).
\]

Solution:

\[
F_{\lambda_j,k} = \frac{\mathcal{A}_\lambda(\mu_k) - 1}{\mathcal{A}_\lambda(\lambda_j)} \cdot \frac{(q^2, q^2)_\infty}{(-q^2, q^2)_\infty} \left(\frac{\vartheta_2(\lambda_j - \mu_k, q)}{\vartheta_1(\lambda_j - \mu_k, q)} + \frac{\vartheta_2(\mu_k + \lambda_j, q)}{\vartheta_1(\mu_k + \lambda_j, q)} \right)
\]

Once again **Cauchy determinant**
Cauchy determinant: open case

We use the following notations:

- ratio of the transfer matrix eigenvalues

\[\chi(\lambda) = \frac{\tau(\lambda, \{\mu_j\})}{\tau(\lambda, \{\lambda_j\})} \]

- and the following function

\[\varphi(\lambda, q) = \frac{\vartheta_1(\lambda, q)}{\sin \lambda} \]

Then we express the overlap as follows

\[S(\{\lambda\} | \{\mu\}) = \prod_{j=1}^{N} \frac{\chi(\lambda_j)}{\chi(\mu_j)} \prod_{j,k=1}^{N} \frac{\varphi(\lambda_j - \lambda_k, q)\varphi(\mu_j - \mu_k, q)\varphi(\lambda_j + \lambda_k, q)\varphi(\mu_j + \mu_k, q)}{\varphi^2(\lambda_j - \mu_k)\varphi^2(\lambda_j + \mu_k)} \]

It remains to fix the two states and compute products in the thermodynamic limit.
Ground states

Configurations of the Bethe roots in the ground state depends on the boundary magnetic fields: \(h_- = -\sinh \zeta \coth \xi_- \) (first site) and \(h_+ = -\sinh \zeta \coth \xi_+ \) (last site). There are several cases leading to different structures of the ground state (S. Grijalva, J. Di Nardis, V. Terras '19).

We consider 3 most important situations. We limit our analysis to the case \(h_- > h_+ \).

- \(\Delta - 1 < h_- < \Delta + 1 \): All \(L/2 \) the roots are real distributed with a density given by the Lieb equation.
- \(0 < h_- < \Delta - 1 \). \(L/2 - 1 \) real roots and a **boundary root** \(\lambda_{BR} = -i(\zeta/2 + \zeta_-) + O(L^{-\infty}) \)
- \(h_+ < \Delta - 1, \Delta + 1 < h_- \): \(L/2 - 1 \) real roots and a **boundary root** \(\lambda_{BR} \)

We change one field \(h_- \rightarrow \tilde{h}_-, \xi_- \rightarrow \tilde{\xi}_- \).
Final result: only real roots

Notations: \(q = e^{-\zeta}, \ p = e^{-2\xi}, \ \tilde{p} = e^{-2\tilde{\xi}}. \)

\[
S(\{\lambda\}|\{\mu\}) = \frac{F^2(q^4 p \tilde{p})}{F(q^4 p^2) F(q^4 \tilde{p}^2)}, \quad F(u) = \prod_{n=0}^{\infty} \frac{(uq^{4n+4}, q^4)}{(uq^{4n+2}, q^4)}.
\]
Final result: one boundary complex root

\[S(\{\lambda\}|\{\mu\}) = \frac{F^2(p^{-1}\tilde{p}^{-1})}{F(p^{-2})F'(\tilde{p}^{-2})} \]
Conclusion and outlook

Advantages of the new approach:

- Explicit results, no Fredholm determinants.
- We know how to deal with complex roots.
- Possibility to apply in a systematic way for all the regimes of the XXZ chain, periodic case, open case etc.

Open problems:

- Can we apply this method far from the ground state?
- Impurities, non-local quenches?
Happy birthday, Fedor!

Федя, с Днем Рождения!