Solving the Form Factor Bootstrap for Solvable Irrelevant Deformations

Stefano Negro | YITP, Stony Brook University

October 11th, 2023 LPTHE & IHP | Paris

BASED ON WORK IN COLLABORATION WITH

Olalla Castro-Alvaredo

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

Fabio Sailis

Isván M. Szécsényi

BASED ON WORK IN COLLABORATION WITH

Olalla Castro-Alvaredo

Fabio Sailis

- Massive Integrable Quantum Field Theories ArXiv: 2305.17068
- **Integrable Quantum Field Theories** JHEP 09 (2023) 048 | ArXiv: 2306.01640
- **Integrable Quantum Field Theories** ArXiv: 2306.11064
- To appear (hopefully) soon

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

Isván M. Szécsényi

♦ Completing the Bootstrap Program for TT-Deformed

♦ Form Factors and Correlation Functions of TT-Deformed

Entanglement Entropy from Form Factors in TT-Deformed

On the General Solution of Form Factor Equations

(Generalised) $T\overline{T}$ -deformations: robust extensions of proper local (Wilsonian) QFTs

Stefano Negro | YITP, Stony Brook University

MOTIVATIONS

Relations to 2D Quantum Gravity, (effective) String Theory, cutoff holography, etc...

See the excellent review by Y. Jiang [1904.13376]

(Generalised) TT-deformations: robust extensions of proper local (Wilsonian) QFTs

Personal angle

Geometric structure of the "theory space" (to be discovered)

Exploration of this space

Find new integrable systems

Stefano Negro | YITP, Stony Brook University

MOTIVATIONS

Relations to 2D Quantum Gravity, (effective) String Theory, cutoff holography, etc...

MOTIVATIONS

A lot is known

Finite-size spectrum, partition functions, S-matrix, realisation as JT-gravity, ...

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

MOTIVATIONS

A lot is not known

Some results do not agree

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

- Finite-size spectrum, partition functions, S-matrix, realisation as JT-gravity, ...
 - What about correlation functions? They are difficult to study (as usual)
 - Some results are out there (particularly on deformed CFTs)
- Aharony, Vaknin [1803.00100] | Cardy [1907.03394] | Kruthoff, Parrikar [2006.03054] | He, Sun [2004.07486]
 - E.g. Cardy [1907.03394] vs. Aharony, Barel [2304.14091]

MOTIVATIONS

- - E.g. Cardy [1907.03394] vs. Aharony, Barel [2304.14091]

Important tool to understand the physics (non-locality, spectral decomposition, RG, ...)

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

A lot is not known

Finite-size spectrum, partition functions, S-matrix, realisation as JT-gravity, ...

What about correlation functions? They are difficult to study (as usual)

Some results are out there (particularly on deformed CFTs) Aharony, Vaknin [1803.00100] | Cardy [1907.03394] | Kruthoff, Parrikar [2006.03054] | He, Sun [2004.07486]

Some results do not agree

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

THE BOOTSTRAP PROGRAM

2] Computation of the Form Factors $F_n^{(0)}(\theta_1, \dots, \theta_n)$ of (semi-)local fields

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

THE BOOTSTRAP PROGRAM

2] Computation of the Form Factors $F_n^{(0)}(\theta_1, \dots, \theta_n)$ of (semi-)local fields

3] Computation of correlation functions and non-trivial checks

4] Classification of operators from solutions to FF equations

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

THE BOOTSTRAP PROGRAM

2] Computation of the Form Factors $F_n^{(0)}(\theta_1, \dots, \theta_n)$ of (semi-)local fields

3] Computation of correlation functions and non-trivial checks

4] Classification of operators from solutions to FF equations

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

THE BOOTSTRAP PROGRAM

Matrix elements of (semi-)local operato

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

THE FORM FACTOR EQUATIONS

ors:
$$F_n^{\mathcal{O}}(\theta_1, \dots, \theta_n) \doteq \left\langle 0 \middle| \mathcal{O}(0) \middle| \theta_1, \dots, \theta_n \right\rangle$$

Matrix elements of (semi-)local operato

Focus on a theory with a single stable particle (no bound states)

$$F_n^{\mathcal{O}}(\theta_1, \dots, \theta_i, \theta_{i+1}, \dots, \theta_n) = S(\theta_{i+1} - \theta_i) F_n^{\mathcal{O}}(\theta_1, \dots, \theta_{i+1}, \theta_i, \dots, \theta_n)$$

$$F_n^{\mathcal{O}}(\theta_1 + 2\pi i, \theta_2, \dots, \theta_n) = \gamma_{\mathcal{O}} F_n^{\mathcal{O}}(\theta_2, \dots, \theta_n, \theta_1)$$

$$\lim_{\vartheta \to \theta} (\theta - \vartheta) F_n^{\mathcal{O}}(\vartheta + \pi i, \theta, \theta_1, \dots, \theta_n) = i \left(1 - \gamma_{\mathcal{O}} \prod_{j=1}^n S(\theta - \theta_j) \right) F_n^{\mathcal{O}}(\theta_1, \dots, \theta_n)$$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

THE FORM FACTOR EQUATIONS

ors:
$$F_n^{\mathcal{O}}(\theta_1, \dots, \theta_n) \doteq \left\langle 0 \left| \mathcal{O}(0) \right| \theta_1, \dots, \theta_n \right\rangle$$

Recipe:
$$S(\theta) = e^{-i\int_0^\infty \frac{dt}{t}g(t)\sin\left(\frac{\theta}{\pi}t\right)}$$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

THE FORM FACTOR EQUATIONS

For diagonal theories (no backscattering, e.g. Ising, Lee-Yang and sinh-Gordon)

Start with 2-particle "minimal" FF and construct the other from it Karowski, Weiss '78 | Smirnov '92

$$\implies F_{\min}(\theta) = \mathcal{N}e^{\int_0^\infty \frac{dt}{t} \frac{g(t)}{\sinh t} \sin^2\left(\frac{i\pi - \theta}{2\pi}t\right)}$$

Start with 2-particle "minimal" FF and construct the other from it Karowski, Weiss '78 | Smirnov '92

Recipe:
$$S(\theta) = e^{-i\int_0^\infty \frac{dt}{t}g(t)\sin\left(\frac{\theta}{\pi}t\right)}$$

Example: sinh-Gordon

$$F_{\min,\text{shG}}(\theta) = e^{-4\int_0^\infty \frac{dx}{x}} \frac{\sinh\left(x\frac{1+b}{4}\right)\sinh\left(x\frac{1-b}{4}\right)\sinh\frac{x}{2}}{\sinh^2 x} \cos\left(x\frac{\vartheta}{\pi}\right)$$

Fring, Mussardo, Simonetti '93 | Koubek, Mussardo '93 | Mussardo '10

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

THE FORM FACTOR EQUATIONS

For diagonal theories (no backscattering, e.g. Ising, Lee-Yang and sinh-Gordon)

$$\implies F_{\min}(\theta) = \mathcal{N}e^{\int_0^\infty \frac{dt}{t} \frac{g(t)}{\sinh t} \sin^2\left(\frac{i\pi - \theta}{2\pi}t\right)}$$

SOLVABLE IRRELEVANT DEFORMATIONS

$$\frac{d}{d\alpha}\mathscr{A}_{\alpha} = \int d^2x \, X_{AB}^{(\alpha)}(x) , \qquad X_{AB}^{(\alpha)}(x) := \lim_{x' \to x} \varepsilon_{\mu\nu} \left[J_A^{\mu}(x;\alpha) J_B^{\nu}(x';\alpha) - J_B^{\mu}(x;\alpha) J_A^{\nu}(x';\alpha) \right]$$

Stefano Negro | YITP, Stony Brook University

Family of theories generated by special flow equations

$$\alpha(x;\alpha)\simeq 0$$

SOLVABLE IRRELEVANT DEFORMATIONS

Family of theories generated by special flow equations

$$\frac{d}{d\alpha}\mathscr{A}_{\alpha} = \int d^2x \, X_{AB}^{(\alpha)}(x) , \qquad X_{AB}^{(\alpha)}(x) := \lim_{x' \to x} \varepsilon_{\mu\nu} \left[J_A^{\mu}(x;\alpha) J_B^{\nu}(x';\alpha) - J_B^{\mu}(x;\alpha) J_A^{\nu}(x';\alpha) \right]$$

If J are internal symmetry currents \implies deformation is marginal

Space-time symmetries and higher conserved currents \implies deformation is irrelevant

Most famous example: the TT defor

Stefano Negro | YITP, Stony Brook University

 $\partial_{\mu}J_{\bullet}^{\mu}(x;\alpha)\simeq 0$

Cardy '19 | Dubovsky, Negro, Porrati '23

rmation
$$J_{A}^{\mu}(x) = T_{0}^{\mu}(x)$$
, $J_{B}^{\mu}(x) = T_{1}^{\mu}(x)$

SOLVABLE IRRELEVANT DEFORMATIONS

Family of theories generated by special flow equations

$$\frac{d}{d\alpha}\mathscr{A}_{\alpha} = \int d^2x \, X_{AB}^{(\alpha)}(x) , \qquad X_{AB}^{(\alpha)}(x) := \lim_{x' \to x} \varepsilon_{\mu\nu} \left[J_A^{\mu}(x;\alpha) J_B^{\nu}(x';\alpha) - J_B^{\mu}(x;\alpha) J_A^{\nu}(x';\alpha) \right]$$

Most famous example: the TT defor

Stefano Negro | YITP, Stony Brook University

 $\partial_{\mu}J_{\bullet}^{\mu}(x;\alpha)\simeq 0$

Cardy '19 | Dubovsky, Negro, Porrati '23

If J are internal symmetry currents \implies deformation is marginal

Space-time symmetries and higher conserved currents \implies deformation is irrelevant

rmation
$$J_{A}^{\mu}(x) = T_{0}^{\mu}(x)$$
, $J_{B}^{\mu}(x) = T_{1}^{\mu}(x)$

SOLVABLE IRRELEVANT DEFORMATIONS

Finite-size spectrum obeys the (inviscid, forced) Burgers equation

$$\frac{\partial}{\partial \alpha} E_n(R;\alpha) + E_n(R;\alpha) \frac{\partial}{\partial R} E_n(R;\alpha) + \frac{1}{R} P_n(R)^2 = 0$$

Resulting energy levels are not compatible with a UV fixed point

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

- Striking example of solvability ($T\overline{T}$ case)

Smirnov, Zamolodchikov '16, Cavaglià, Negro, Szécsényi, Tateo '16

SOLVABLE IRRELEVANT DEFORMATIONS

Q

$$S_{\alpha}(\theta) = S_0(\theta)\Phi_{\alpha}(\theta)$$
,

Stefano Negro | YITP, Stony Brook University

Alternative realisation for factorised scattering theories Smirnov, Zamolodchikov '16

$$\mathcal{D}_{\alpha}(\theta) := \exp\left[-i\sum_{s\in\mathcal{S}}\alpha_{s}\sinh(s\theta)\right]$$

SOLVABLE IRRELEVANT DEFORMATIONS

Alternative realisation for factorised scattering theories Smirnov, Zamolodchikov '16

$$S_{\alpha}(\theta) = S_0(\theta)\Phi_{\alpha}(\theta) ,$$

Behaviour of Φ heavily depends on convergence properties of the series

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

$$P_{\alpha}(\theta) := \exp\left[-i\sum_{s\in\mathcal{S}}\alpha_{s}\sinh(s\theta)\right]$$

 \mathcal{S} is the set of spins of local conserved charges (typically $\mathcal{S} \subseteq 2\mathbb{Z}_{>0} + 1$)

Camilo, Fleury, Lencsés, Negro, Zamolodchikov, '21

SOLVABLE IRRELEVANT DEFORMATIONS

Alternative realisation for factorised scattering theories Smirnov, Zamolodchikov '16

$$S_{\alpha}(\theta) = S_0(\theta)\Phi_{\alpha}(\theta) ,$$

Assumption: $\alpha_s = 0$ for almost all $s \in S$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

$$P_{\alpha}(\theta) := \exp\left[-i\sum_{s\in\mathcal{S}}\alpha_{s}\sinh(s\theta)\right]$$

 \mathcal{S} is the set of spins of local conserved charges (typically $\mathcal{S} \subseteq 2\mathbb{Z}_{>0} + 1$)

Behaviour of Φ heavily depends on convergence properties of the series

Camilo, Fleury, Lencsés, Negro, Zamolodchikov, '21

FORM FACTORS FOR SOLVABLE IRRELEVANT DEFORMATIONS

Stefano Negro | YITP, Stony Brook University

- S matrix has no nice integral representation!
- Ansatz: the minimal form factor factorises
- $F_{\min}(\theta; \boldsymbol{\alpha}) = F_{\min}(\theta; \boldsymbol{0})\varphi_{\boldsymbol{\alpha}}(\theta) \implies \varphi_{\boldsymbol{\alpha}}(\theta) = \Phi_{\boldsymbol{\alpha}}(\theta)\varphi_{\boldsymbol{\alpha}}(-\theta) = \varphi_{\boldsymbol{\alpha}}(2\pi i \theta)$

$$F_{\min}(\theta; \boldsymbol{\alpha}) = F_{\min}(\theta; \boldsymbol{0})\varphi_{\boldsymbol{\alpha}}(\theta) \implies \varphi_{\boldsymbol{\alpha}}(\theta) = \Phi_{\boldsymbol{\alpha}}(\theta)\varphi_{\boldsymbol{\alpha}}(-\theta) = \varphi_{\boldsymbol{\alpha}}(2\pi i - \theta)$$

Most general solution is

$$\varphi_{\alpha}(\theta) = \exp\left[-\frac{i\pi - \theta}{2\pi} \sum_{s \in \mathcal{S}} \alpha_s \sinh(s\theta) + \sum_{t \in \mathbb{Z}} \beta_t \cosh(t\theta)\right]$$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

FORM FACTORS FOR SOLVABLE IRRELEVANT DEFORMATIONS

- *S* matrix has no nice integral representation!
 - Ansatz: the minimal form factor factorises

Dubovsky, Flauger, Gorbenko '12 (for TTbar)

$$F_{\min}(\theta; \boldsymbol{\alpha}) = F_{\min}(\theta; \boldsymbol{0})\varphi_{\boldsymbol{\alpha}}(\theta) \implies \varphi_{\boldsymbol{\alpha}}(\theta) = \Phi_{\boldsymbol{\alpha}}(\theta)\varphi_{\boldsymbol{\alpha}}(-\theta) = \varphi_{\boldsymbol{\alpha}}(2\pi i - \theta)$$

Most general solution is

$$\varphi_{\alpha}(\theta) = \exp\left[-\frac{i\pi - \theta}{2\pi} \sum_{s \in \mathcal{S}} \alpha_s \sinh(s\theta) + \sum_{t \in \mathbb{Z}} \beta_t \cosh(t\theta)\right]$$

Universal

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

- *S* matrix has no nice integral representation!
 - Ansatz: the minimal form factor factorises

Dubovsky, Flauger, Gorbenko '12 (for TTbar)

$$F_{\min}(\theta; \boldsymbol{\alpha}) = F_{\min}(\theta; \boldsymbol{0})\varphi_{\boldsymbol{\alpha}}(\theta) \implies \varphi_{\boldsymbol{\alpha}}(\theta) = \Phi_{\boldsymbol{\alpha}}(\theta)\varphi_{\boldsymbol{\alpha}}(-\theta) = \varphi_{\boldsymbol{\alpha}}(2\pi i - \theta)$$

Most general solution is

$$\varphi_{\alpha}(\theta) = \exp\left[-\frac{i\pi - \theta}{2\pi} \sum_{s \in \mathcal{S}} \alpha_s \sinh(s\theta) + \sum_{t \in \mathbb{Z}} \beta_t \cosh(t\theta)\right]$$

Universal

Unusual $e^{\theta e^{s\theta}}$ dependence

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

- *S* matrix has no nice integral representation!
 - Ansatz: the minimal form factor factorises

Dubovsky, Flauger, Gorbenko '12 (for TTbar)

$$F_{\min}(\theta; \boldsymbol{\alpha}) = F_{\min}(\theta; \boldsymbol{0})\varphi_{\boldsymbol{\alpha}}(\theta) \implies \varphi_{\boldsymbol{\alpha}}(\theta) = \Phi_{\boldsymbol{\alpha}}(\theta)\varphi_{\boldsymbol{\alpha}}(-\theta) = \varphi_{\boldsymbol{\alpha}}(2\pi i - \theta)$$

Most general solution is

$$\varphi_{\alpha}(\theta) = \exp\left[-\frac{i\pi - \theta}{2\pi} \sum_{s \in \mathcal{S}} \alpha_s \sinh(s\theta) + \sum_{t \in \mathbb{Z}} \beta_t \cosh(t\theta)\right]$$

Universal

Unusual $e^{\theta e^{s\theta}}$ dependence

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

- S matrix has no nice integral representation!
 - Ansatz: the minimal form factor factorises

Dubovsky, Flauger, Gorbenko '12 (for TTbar)

Huge indeterminacy

 $F_{\min}(\theta; \boldsymbol{\alpha}) = F_{\min}(\theta; \boldsymbol{0})\varphi_{\boldsymbol{\alpha}}(\theta) \implies$

Most general solution is

$$\varphi_{\alpha}(\theta) = \exp\left[-\frac{i\pi - \theta}{2\pi} \sum_{s \in \mathcal{S}} \alpha_s \sinh(s\theta) + \sum_{t \in \mathbb{Z}} \beta_t \cosh(t\theta)\right]$$

Universal

Unusual $e^{\theta e^{s\theta}}$ dependence

A physicist's pragmatic approach: just forget about them (a.k.a. "minimality")

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

- S matrix has no nice integral representation!
 - Ansatz: the minimal form factor factorises

$$\Rightarrow \varphi_{\alpha}(\theta) = \Phi_{\alpha}(\theta)\varphi_{\alpha}(-\theta) = \varphi_{\alpha}(2\pi i - \theta)$$

Dubovsky, Flauger, Gorbenko '12 (for TTbar)

Huge indeterminacy

FORM FACTORS FOR SOLVABLE IRRELEVANT DEFORMATIONS

What about higher particle FF?

They factorise as well!

$$F_n^{\mathcal{O}}(\theta_1, \dots, \theta_n; \boldsymbol{\alpha}) = F_n^{\mathcal{O}}(\theta_n; \boldsymbol{\alpha}$$

Stefano Negro | YITP, Stony Brook University

 $\theta(\theta_1, \ldots, \theta_n; \mathbf{0}) G_n^{\mathcal{O}}(\theta_1, \ldots, \theta_n; \boldsymbol{\alpha})$

$$F_n^{\mathcal{O}}(\theta_1, \dots, \theta_n; \boldsymbol{\alpha}) = F_n^{\mathcal{O}}(\theta_1, \dots, \theta_n; \boldsymbol{0}) G_n^{\mathcal{O}}(\theta_1, \dots, \theta_n; \boldsymbol{\alpha})$$

S matrix and of γ_{\odot} and a product of functions ϕ

Stefano Negro | YITP, Stony Brook University

FORM FACTORS FOR SOLVABLE IRRELEVANT DEFORMATIONS

- What about higher particle FF?
 - They factorise as well!

- Universal properties of G_n :
- \Rightarrow Valid for any field with $\gamma_{\odot} = \pm 1$ (e.g. local fields, symmetry fields)
- \Rightarrow It further factorises in the product of an oscillatory function of the

Example: Thermal Ising (free Majorana fermion) $(F_{\min}(\theta; \mathbf{0}) = -i \sinh \theta/2)$

$$F_{2n}^{\mu}(\theta_{1},...,\theta_{2n};\boldsymbol{\alpha}) = i^{n}\langle\mu\rangle_{\boldsymbol{\alpha}}\sqrt{\prod_{i=1}^{2n}\cos\left(\sum_{s\in\mathcal{S}}\frac{\alpha_{s}}{2}\sum_{j=1}^{2n}\sinh(s\theta_{ij})\right)}\prod_{i< j}\tanh\frac{\theta_{ij}}{2}\varphi(\theta_{ij};\boldsymbol{\alpha})$$
$$F_{2n+1}^{\sigma}(\theta_{1},...,\theta_{2n+1};\boldsymbol{\alpha}) = i^{n}F_{1}^{\sigma}(\boldsymbol{\alpha})\sqrt{\prod_{i=1}^{2n+1}\cos\left(\sum_{s\in\mathcal{S}}\frac{\alpha_{s}}{2}\sum_{j=1}^{2n+1}\sinh(s\theta_{ij})\right)}\prod_{i< j}\tanh\frac{\theta_{ij}}{2}\varphi(\theta_{ij};\boldsymbol{\alpha})$$

The field Θ (trace of EM tensor) requires an additional complicated normalisation

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

FF are "building blocks" for correlation functions

A nice expression: the "cumulant expansion" (for fields with $\langle O \rangle \neq 0$)

$$\log \frac{\langle \mathcal{O}(0)\mathcal{O}(r) \rangle_{\alpha}}{\langle \mathcal{O} \rangle_{\alpha}^{2}} \approx \int_{-\infty}^{\infty} d\theta \, K_{0}(2mr \cosh \frac{\theta}{2}) \left| F_{2}^{\mathcal{O}}(\theta; \alpha) \right|^{2} + \cdots$$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

Smirnov '92

FF are "building blocks" for correlation functions

A nice expression: the "cumulant expansion" (for fields with $\langle O \rangle \neq 0$)

$$\log \frac{\langle \mathcal{O}(0)\mathcal{O}(r) \rangle_{\alpha}}{\langle \mathcal{O} \rangle_{\alpha}^{2}} \approx \int_{-\infty}^{\infty} d\theta \, K_{0}(2mr \cosh \frac{\theta}{2}) \left| F_{2}^{\mathcal{O}}(\theta; \boldsymbol{\alpha}) \right|^{2} + \cdots$$

The presence of
$$\left| \varphi_{\alpha}(\theta) \right|^2$$
 in

Consequence:

 $\alpha^{\star} > 0$: wild divergence

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

CORRELATION FUNCTIONS

Smirnov '92

mplies a behaviour $\propto e^{\frac{\theta}{\pi}\sum_{s}\alpha_{s}\sinh(s\theta)}$

$$\alpha^{\star} < 0$$
: hyper-convergence

Fundamental excitations acquire an effective size

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

Interpretation

Cardy, Doyon [2010.15733]

Fundamental excitations acquire an effective size

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

- Interpretation
 - Cardy, Doyon [2010.15733]

- $\alpha^{\star} > 0$: effective size is **positive** \implies new scale limiting access to UV
 - High momentum (rapidity) particles produce divergences
 - Cure by introducing a cut-off $\Lambda = 2W_0(\pi r/\alpha)$ (Lambert function)

Fundamental excitations acquire an effective size

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

- Interpretation
 - Cardy, Doyon [2010.15733]

- $\alpha^{\star} > 0$: effective size is **positive** \implies new scale limiting access to UV
 - High momentum (rapidity) particles produce divergences
 - Cure by introducing a cut-off $\Lambda = 2W_0(\pi r/\alpha)$ (Lambert function)
- $\alpha^{\star} < 0$: effective size is **negative** \implies UV can be probed without issue
 - Actually "there is more space"
 - Intuitively explains the hyper-convergence (and Hagedorn)

$$\log \frac{\langle \mathcal{O}(0)\mathcal{O}(r) \rangle_{\alpha}}{\langle \mathcal{O} \rangle_{\alpha}^{2}} \approx \int_{-\infty}^{\infty} d\theta \, K_{0}(2mr \cosh \frac{\theta}{2}) \left| F_{2}^{\mathcal{O}}(\theta;\alpha) \right|^{2} + \cdots$$

Expand the Bessel function for $mr \ll 1$

$$\log \frac{\langle \mathcal{O}(0)\mathcal{O}(r) \rangle_{\alpha}}{\langle \mathcal{O} \rangle_{\alpha}^{2}} \approx -\log(mr) \int_{-\infty}^{\infty} d\theta f(\theta; \alpha) e^{\frac{\theta}{\pi}\alpha \sinh \theta} + \dots = -4\Delta^{\mathcal{O}}(\alpha) \log(mr) + \dots$$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

UNMET EXPECTATIONS

Consider the TT case for $\alpha < 0$

$$\log \frac{\langle \mathcal{O}(0)\mathcal{O}(r) \rangle_{\alpha}}{\langle \mathcal{O} \rangle_{\alpha}^{2}} \approx \int_{-\infty}^{\infty} d\theta \, K_{0}(2mr \cosh \frac{\theta}{2}) \left| F_{2}^{\mathcal{O}}(\theta;\alpha) \right|^{2} + \cdots$$

Expand the Bessel function for $mr \ll 1$

$$\log \frac{\langle \mathcal{O}(0)\mathcal{O}(r) \rangle_{\alpha}}{\langle \mathcal{O} \rangle_{\alpha}^{2}} \approx -\log(mr) \int_{-\infty}^{\infty} d\theta f(\theta; \alpha) e^{\frac{\theta}{\pi}\alpha \sinh \theta} + \dots = -4\Delta^{\mathcal{O}}(\alpha) \log(mr) + \dots$$

The 2-point functions appear to exhibit power-law scaling at small scales!

Tension with the expectations: there should be no conventional CFT in the UV

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

UNMET EXPECTATIONS

Consider the TT case for $\alpha < 0$

UNMET EXPECTATIONS

Consider the TT case for $\alpha < 0$

Consistency check: Zamolodchikov's *c*-theorem Zamolodchikov '86

$$c^{\rm UV} - c^{\rm IR} = \frac{3}{2} \int_0^\infty dr \, r^3 \langle \Theta(0)\Theta(r) \rangle_{c,\alpha}$$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

Consistency check: Zamolodchikov's *c*-theorem Zamolodchikov '86

$$c^{\rm UV} - c^{\rm IR} = \frac{3}{2} \int_0^\infty dr \, r^3 \langle \Theta(0)\Theta(r) \rangle_{c,\alpha}$$

Insert our results in the **lsing model** case:

$$c(\alpha) = \frac{3}{8} \int_{-\infty}^{+\infty} dx \frac{\sin^2\left(\frac{\alpha}{2}\sinh x\right)}{\alpha^2 \cosh^6 \frac{x}{2}} e^{\frac{\alpha}{\pi}x\sinh^2 \theta}$$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

UNMET EXPECTATIONS

Consistency check: Zamolodchikov's *c*-theorem Zamolodchikov '86

$$c^{\rm UV} - c^{\rm IR} = \frac{3}{2} \int_0^\infty dr \, r^3 \langle \Theta(0)\Theta(r) \rangle_{c,\alpha}$$

Insert our results in the Ising model case:

$$c(\alpha) = \frac{3}{8} \int_{-\infty}^{+\infty} dx \frac{\sin^2\left(\frac{\alpha}{2}\sinh x\right)}{\alpha^2 \cosh^6 \frac{x}{2}} e^{\frac{\alpha}{\pi}x\sinh x}$$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

UNMET EXPECTATIONS

TBA tells us that $c^{UV}(\alpha)$ should vanish for all $\alpha < 0!$ Can we even define this quantity?

WHAT ABOUT THE COSHES?

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

- Throwing away all $\beta_t \cosh(t\theta)$ in $\varphi(\theta)$ is a strong assumption!
- We have an example where they play a fundamental role: sinh-Gordon

Throwing away all $\beta_t \cosh(t\theta)$ in $\varphi(\theta)$ is a strong assumption!

We have an example where they play a fundamental role: sinh-Gordon

$$S_{\rm shG}(\theta) = \frac{\sinh \theta - i \cos \left(\frac{\pi}{2}b\right)}{\sinh \theta + i \cos \left(\frac{\pi}{2}b\right)} = -\exp\left[-4i \sum_{k=0}^{\infty} (-1)^{k+1} \frac{\cos \left(\frac{2k+1}{2}\pi b\right)}{2k+1} \sinh \left((2k+1)\theta\right)\right]$$

Fine-tuned superposition of solvable irrelevant deformations of thermal Ising

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS WHAT ABOUT THE COSHES?

LeClair [2107.02230] | Ahn, LeClair [2205.10905]

WHAT ABOUT THE COSHES?

Can we write the minimal FF in the form we found above?

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

Notice the following (new result?):

$$\log F_{\min,\text{shG}}(\theta) = -4 \int_{0}^{\infty} \frac{dx}{x} \frac{\sinh\left(x\frac{1+b}{4}\right) \sinh\left(x\frac{1-b}{4}\right) \sinh\frac{x}{2}}{\sinh^{2}x} \cos\left(x\frac{\theta}{\pi}\right) =$$
$$= \log\left(-i\sinh\frac{\theta}{2}\right) - i\frac{i\pi-\theta}{2\pi}\log\left(-S_{\text{shG}}(\theta)\right) + C_{\text{shG}}(\theta)$$
$$C_{\text{shG}}(\theta) = \frac{\log 2}{2} - \frac{1+b}{2}\log\left[\sin\frac{\pi b}{2} - \cosh\theta\right] - \frac{1-b}{2}\log\left[-\sin\frac{\pi b}{2} - \cosh\theta\right]$$
$$- \frac{i}{4\pi}\left[\left(\text{Li}_{2}\left(ie^{-\theta-i\frac{\pi b}{2}}\right) + \text{Li}_{2}\left(-ie^{-\theta-i\frac{\pi b}{2}}\right) + (b \to -b)\right) + (\theta \to -\theta)\right]$$

$${}_{shG}(\theta) = -4 \int_0^\infty \frac{dx}{x} \frac{\sinh\left(x\frac{1+b}{4}\right) \sinh\left(x\frac{1-b}{4}\right) \sinh\frac{x}{2}}{\sinh^2 x} \cos\left(x\frac{\theta}{\pi}\right) =$$

$$= \log\left(-i\sinh\frac{\theta}{2}\right) - i\frac{i\pi-\theta}{2\pi}\log\left(-S_{shG}(\theta)\right) + C_{shG}(\theta)$$

$$= \frac{\log 2}{2} - \frac{1+b}{2}\log\left[\sin\frac{\pi b}{2} - \cosh\theta\right] - \frac{1-b}{2}\log\left[-\sin\frac{\pi b}{2} - \cosh\theta\right]$$

$$- \frac{i}{4\pi}\left[\left(\operatorname{Li}_2\left(ie^{-\theta-i\frac{\pi b}{2}}\right) + \operatorname{Li}_2\left(-ie^{-\theta-i\frac{\pi b}{2}}\right) + (b\to-b)\right) + (\theta\to-\theta)\right]$$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

╈

WHAT ABOUT THE COSHES?

Can we write the minimal FF in the form we found above?

Notice the following (new result?):

$$\log F_{\min,\text{shG}}(\theta) = -4 \int_0^\infty \frac{dx}{x} \frac{\sinh\left(x\frac{1+b}{4}\right)\sinh\left(x\frac{1-b}{4}\right)\sinh\frac{x}{2}}{\sinh^2 x} \cos\left(x\frac{\theta}{\pi}\right) =$$
$$= \log\left(-i\sinh\frac{\theta}{2}\right) - i\frac{i\pi-\theta}{2\pi}\log\left(-S_{\text{shG}}(\theta)\right) + C_{\text{shG}}(\theta)$$
$$C_{\text{shG}}(\theta) = \frac{\log 2}{2} - \frac{1+b}{2}\log\left[\sin\frac{\pi b}{2} - \cosh\theta\right] - \frac{1-b}{2}\log\left[-\sin\frac{\pi b}{2} - \cosh\theta\right]$$
$$- \frac{i}{4\pi}\left[\left(\text{Li}_2\left(ie^{-\theta-i\frac{\pi b}{2}}\right) + \text{Li}_2\left(-ie^{-\theta-i\frac{\pi b}{2}}\right) + (b\to-b)\right) + (\theta\to-\theta)\right]$$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

+

WHAT ABOUT THE COSHES?

Can we write the minimal FF in the form we found above?

Ising minimal FF

Can we write the minimal FF in the form we found above?

Notice the following (new result?):

$$\log F_{\min,\text{shG}}(\theta) = -4 \int_{0}^{\infty} \frac{dx}{x} \frac{\sinh\left(x\frac{1+b}{4}\right) \sinh\left(x\frac{1-b}{4}\right) \sinh\frac{x}{2}}{\sinh^{2}x} \cos\left(x\frac{\theta}{\pi}\right) =$$
$$= \log\left(-i\sinh\frac{\theta}{2}\right) - i\frac{i\pi-\theta}{2\pi}\log\left(-S_{\text{shG}}(\theta)\right) + C_{\text{shG}}(\theta)$$
$$C_{\text{shG}}(\theta) = \frac{\log 2}{2} - \frac{1+b}{2}\log\left[\sin\frac{\pi b}{2} - \cosh\theta\right] - \frac{1-b}{2}\log\left[-\sin\frac{\pi b}{2} - \cosh\theta\right] + \frac{1-b}{2}\log\left[-\sin\frac{\pi b}{2} - \cosh\theta\right] + \frac{i}{4\pi}\left[\left(\operatorname{Li}_{2}\left(ie^{-\theta-i\frac{\pi b}{2}}\right) + \operatorname{Li}_{2}\left(-ie^{-\theta-i\frac{\pi b}{2}}\right) + (b\to-b)\right) + (\theta\to-\theta)\right]$$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

WHAT ABOUT THE COSHES?

Ising minimal FF

$$\frac{i\pi - \theta}{2\pi} \sum_{s} \alpha_{s} \sinh(s\theta)$$

Can we write the minimal FF in the form we found above? Notice the following (new result?):

$$\log F_{\min,\text{shG}}(\theta) = -4 \int_{0}^{\infty} \frac{dx}{x} \frac{\sinh\left(x\frac{1+b}{4}\right)\sinh\left(x\frac{1-b}{4}\right)\sinh\frac{x}{2}}{\sinh^{2}x} \cos\left(x\frac{\vartheta}{\pi}\right) =$$
$$= \log\left(-i\sinh\frac{\theta}{2}\right) - i\frac{i\pi-\theta}{2\pi}\log\left(-S_{\text{shG}}(\theta)\right) + C_{\text{shG}}(\theta)$$
$$C_{\text{shG}}(\theta) = \frac{\log 2}{2} - \frac{1+b}{2}\log\left[\sin\frac{\pi b}{2} - \cosh\theta\right] - \frac{1-b}{2}\log\left[-\sin\frac{\pi b}{2} - \cosh\theta\right] + \frac{1-b}{2}\log\left[-\sin\frac{\pi b}{2} - \cosh\theta\right] + \frac{i}{4\pi}\left[\left(\text{Li}_{2}\left(ie^{-\theta-i\frac{\pi b}{2}}\right) + \text{Li}_{2}\left(-ie^{-\theta-i\frac{\pi b}{2}}\right) + (b\to-b)\right) + (\theta\to-\theta)\right]$$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

WHAT ABOUT THE COSHES?

Ising minimal FF

$$\frac{i\pi - \theta}{2\pi} \sum_{s} \alpha_{s} \sinh(s\theta)$$

$$\sum_{t} \beta_t \cosh(t\theta)$$

WHAT ABOUT THE COSHES?

In this case the β_t are related to the α_s

$$S(\theta) = e^{-i\int_0^\infty \frac{dt}{t}g(t)\sin\left(\frac{\theta}{\pi}t\right)} \text{ and } g(t) = -t^2 \sum_{n=1}^\infty \frac{g_n}{t^2 + n^2\pi^2} \implies \alpha_s = -\frac{1}{2\pi} \frac{g_s}{s^2}$$

$$F_{\min}(\theta) = e^{\int_0^\infty \frac{dt}{t} \frac{g(t)}{\sinh t} \cos\left(\frac{i\pi - \theta}{\pi}t\right)}$$

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

$$\Rightarrow \beta_t = \frac{1}{2\pi} \frac{\alpha_t}{t} - \frac{2}{\pi} t \sum_{\substack{s=1, s \neq t}}^{\infty} \frac{g_s}{s^2 - t^2}$$

WHAT ABOUT THE COSHES?

Can we take this as a definition?

$$S_{\alpha}(\theta) = \exp\left[-i\sum_{s\in\mathcal{S}}\alpha_{s}\sinh(s\theta)\right] \implies F_{\min}(\theta) = \exp\left[-\frac{i\pi-\theta}{2\pi}\sum_{s}\alpha_{s}\sinh(s\theta) + \sum_{t}\beta_{t}\cosh(s\theta)\right]$$

With $\beta_{t} = \frac{1}{2\pi}\frac{\alpha_{t}}{t} - \frac{2}{\pi}t\sum_{s=1,s\neq t}^{\infty}\frac{g_{s}}{s^{2}-t^{2}}$

For $T\overline{T}$ -deformed Ising $\implies F_{\min}(\theta) = -\frac{\theta}{2}$

Stefano Negro | YITP, Stony Brook University

$$\frac{\alpha}{\pi} \left[\cosh\theta \log\left(2\cosh\theta - 2\right) + 1 - \theta\sinh\theta + \right]$$

CONCLUSIONS AND OUTLOOK

Very general expression for FF in IQFTs deformed by arbitrary "generalised TTbar"

Indeterminacy poses problems: we need to find physical reasons to fix it

Stefano Negro | YITP, Stony Brook University

SOLVING THE FORM FACTOR BOOTSTRAP FOR SOLVABLE IRRELEVANT DEFORMATIONS

CONCLUSIONS AND OUTLOOK

Very general expression for FF in IQFTs deformed by arbitrary "generalised TTbar"

Indeterminacy poses problems: we need to find physical reasons to fix it

Our representation works for standard IQFTs: study the role of β_s there W.i.p. with Castro-Alvaredo and Szécsényi Attempt comparison with existing results on correlation functions

Stefano Negro | YITP, Stony Brook University

CONCLUSIONS AND OUTLOOK

Very general expression for FF in IQFTs deformed by arbitrary "generalised TTbar"

Indeterminacy poses problems: we need to find physical reasons to fix it

Our representation works for standard IQFTs: study the role of β_s there W.i.p. with Castro-Alvaredo and Szécsényi Attempt comparison with existing results on correlation functions

Extension to "twist fields" and computation of entanglement measures: straightforward Castro-Alvaredo, Negro, Sailis [2306.11064] | Hou, He, Jiang [2306.07784]

Extension to theories w/ bound states and/or non-diagonal scattering

Stefano Negro | YITP, Stony Brook University

Thank you

Happy Birthday Fedor!

Stefano Negro | YITP, Stony Brook University

October 11th, 2023 LPTHE & IHP | Paris