Diff (S^{1}) Coadjoint Orbits, Universal Teichmüller Space and
 Quantization of Conformal Welding

Samson L. Shatashvili

Trinity College Dublin

October 12, 2023, IHP Paris, Fedya's 65th birthday conference
$g(z, \bar{z}): \mathbf{D} \rightarrow \mathbf{G}, \mathbf{G}$ - some compact Lie group, \mathbf{D} - unit disk.
$h(x): \partial \mathbf{D}=\mathbf{S}^{\mathbf{1}} \rightarrow \mathbf{G}, \quad h(x)=h_{+}(x) h_{-}(x)$
h_{+}, h_{-}solutions of matrix RH problem: h_{+}holomorphic inside \& h_{-}holomorphic outside \mathbf{D} (and $\in \mathbf{G}^{\mathbf{C}}$) - solutions of EoM $\bar{\partial} J=0$
$\alpha_{2}\left(h_{1}, h_{2}\right)-\hat{L G_{k}}$ group 2-cocycle.
Both sides are "ambiguous".
For Lie algebra: $\quad i \alpha_{2}\left(u_{+}, u_{-}\right)=\int_{S^{1}} \operatorname{Tr} u_{+} d u_{-}, \quad u_{+}=u_{-}^{+}$.

These follow from cocycle property of $W(g)$ (PW formula)

$$
W(g h)=W(g)+W(h)-\int_{D} \operatorname{Tr}^{-1} \partial g \bar{\partial} h h^{-1}
$$

For abelian group, say $U(1), g=e^{i X}$, action is of free scalar:

$$
\begin{gathered}
W(x)=\int_{D} \partial X \bar{\partial} X=W\left(X_{0}+X_{h}(u)\right)= \\
=\int_{D} \partial X_{0} \bar{\partial} X_{0}+\int_{D} \partial X_{h} \bar{\partial} X_{h}+\int_{D}\left(\partial X_{0} \bar{\partial} X_{h}+c . c .\right)
\end{gathered}
$$

$X_{0_{\partial D}}=0, X_{h}(u)$ is harmonic $X_{h_{\partial D}}=u$. Cross term vanishes and

$$
\int_{D} \partial X_{h} \bar{\partial} X_{h}=i \int_{S^{1}} u_{+} d u_{-}, \quad u=u_{+}+u_{-}, \quad \bar{u}_{+}=u_{-}
$$

$W Z W: g_{\left.\right|_{\partial D}}=1, h=h_{+} h_{-}$, cross term $\Rightarrow 0$ in quantum theory.

Polyakov's (1987) gravitational version (as geometric action $W_{b_{0}}^{\text {Vir }}$ on Virasoro coadjoint orbit Alekseev, SS (1988): $b_{0}=-\frac{c n^{2}}{48 \pi^{2}}$, $n=0,1,2, \ldots$ are $\operatorname{PSL}(2, \mathbf{R}) \cong \operatorname{Möb}\left(S^{1}\right)$ orbits of $\left.\operatorname{Diff}\left(S^{1}\right)\right)$

$$
Z(F(x))=\int_{f_{\mid \partial D}=F(x)}[D f] e^{i W_{0}^{V i r}(f(z, \bar{z}))} \sim e^{i \alpha_{2}\left(F_{\left.2\right|_{\partial D}}, F_{1 \mid \partial D}\right)}
$$

$$
W_{0}^{V i r}(f)=\int d^{2} z \frac{f_{\bar{z}}}{f_{z}}\left(\frac{f_{z z z}}{f_{z}}-2\left(\frac{f_{z z}}{f_{z}}\right)^{2}\right)=W_{\operatorname{grav}}\left(f^{-1}\right)
$$

$F=\left(F_{2} \circ F_{1}\right)_{\left.\right|_{\partial D}}-F_{2}, F_{1}$ defined by F (by EoM $\bar{\partial} S(f)=0$).
$\alpha_{2}\left(F_{1}, F_{2}\right)$ - Bott-Virasoro group 2-cocycle.
These also follow from cocycle property, and bring us to welding.

$\operatorname{Diff}\left(S^{1}\right) / \operatorname{Möb}\left(S^{1}\right)$ and Conformal Welding

$F \in \operatorname{Diff}\left(S^{1}\right)$ - there exist $g_{+}, g_{-} \in \operatorname{Diff}(\mathbf{C})$ s.t. g_{+}is analytic inside the disk \mathbf{D} and g_{-}is analytic outside; on boundary $x \in S^{1}$

$$
g_{+}\left(e^{i F(x)}\right)=g_{-}\left(e^{i x}\right)
$$

$g_{+}-$maps interior of disk \mathbf{D} to some bounded domain $\mathbf{B} \in \mathbf{C}$
g_{-}exterior of the disk \mathbf{D}^{*} to the compliment of \mathbf{B} Both map S^{1} on to boundary $\partial \mathbf{B}$.

g_{+}, g_{-}are determined uniquely by F (after fixing three points).
If $F \in \operatorname{Diff}\left(S^{1}\right)$ is replaced by quasiconformal homeomorphism of S^{1} one gets $T(1)$ - Universal Teichmüller Space Bers (1965).
g_{+}, g_{-}now are quasiconformal homeomorphisms of \mathbf{C}.
$T(1)$ contains all Teichmüller spaces $T(\Gamma)$ of every Fuchsian Γ.
$\operatorname{Diff}\left(S^{1}\right) / \operatorname{Möb}\left(S^{1}\right)$ viewed as a coadjoint orbit of the Bott-Virasoro group is a subspace of $T_{0}(1)$ - connected component $T(1)$.
$T(1)$ admits a new structure of a complex Hilbert manifold (Takhtajan, Teo (2004)).
$T_{0}(1)$ - Kahler-Einstein, has analog of WP metric. Kahler potential
$K_{T T}\left(g_{-}, g_{+}\right)=K_{T T}\left(g_{+}\right)+K_{T T}\left(g_{-}\right)=\iint_{D}\left|\frac{g_{+}^{\prime \prime}}{g_{+}^{\prime}}\right|^{2} d^{2} z+\iint_{D^{*}}\left|\frac{g_{-}^{\prime \prime}}{g_{-}^{\prime}}\right|^{2} d^{2} z$

This helps define real $\alpha_{2}\left(g_{-}, g_{+}\right)$in terms of Bott-Virasoro cocycle:

$$
\alpha_{2}\left(g_{-}, g_{+}\right)=\alpha_{2}^{B o t t}\left(g_{-}, g_{+}\right)+i K_{T T}\left(g_{-}, g_{+}\right), \quad \operatorname{Im} \alpha_{2}=0
$$

Canonical Transformations, Berezin's Quantization, Welding and Cocycles (AST, 2022)

TT can be directly connected to Berezin (and Segal-Wilson).
Consider bosonic field on a circle $\phi(x)$ and $\Omega=\int_{S^{1}} \delta \phi \partial_{x} \delta \phi d x$. Under diffeomorfism $\tilde{x}=F(x): \tilde{\phi}(\tilde{x})=\phi(x)$ and Ω is invariant.

$$
\begin{gathered}
\phi(x)=\sum_{n} \frac{1}{\sqrt{|n|}} a_{n} e^{i n x}=\sum_{n} \frac{1}{\sqrt{|n|}} \tilde{a}_{n} e^{i n \tilde{x}}, \quad a_{n}^{+}=a_{-n} \\
\Omega=\sum_{n>0} \delta a_{n} \delta a_{n}^{+}=\sum_{n>0} \delta \tilde{a}_{n} \delta \tilde{a}_{n}^{+} \\
{\left[a_{n}, a_{m}^{+}\right]=\left[\tilde{a}_{n}, \tilde{a}_{m}^{+}\right]=\delta_{n, m}}
\end{gathered}
$$

This defines the canonical transformation $\left(a, a^{+}\right) \rightarrow\left(\tilde{a}, \tilde{a}^{+}\right)$

$$
\binom{\tilde{a}}{\tilde{a}^{+}}=C\binom{a}{a^{+}}=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\binom{a}{a^{+}}
$$

$\alpha, \beta, \gamma, \delta$ are essentially Grunsky matrices of TT and are expressed in terms of $F(x) . \alpha^{-1} \beta$ and $\gamma \alpha^{-1}$ are symmetric, $\alpha \delta^{t}-\beta \gamma^{t}=1$.

Fock space \mathbf{A} with vacuum $\left|0>, a_{n}\right| 0>=0$, Fock space \mathbf{B} with $\left|\tilde{0}>, \tilde{a}_{n}\right| \tilde{0}>=0, a_{n}^{+}, \tilde{a}_{n}^{+}$- creation operators. Normal form of

$$
\tilde{a}=V_{F} a V_{F}^{-1} \quad \tilde{a}^{+}=V_{F} a^{+} V_{F}^{-1}, \quad\left|\tilde{0}>=V\left(a, a^{+}\right)\right| 0>
$$

is (Berezin (1962)):
$V_{F}\left(a, a^{+}\right)=c \exp \left\{a^{+}\left(\alpha^{-1}-1\right) a-\frac{1}{2} a^{+}\left(\alpha^{-1} \beta\right) a^{+}+\frac{1}{2} a\left(\gamma \alpha^{-1}\right) a\right\}$
Requirement of unitarity: $\gamma=\beta^{*}, \delta=\alpha^{*}, c=1 / \operatorname{det}\left(\alpha \alpha^{+}\right)^{\frac{1}{4}}$ and

$$
U_{F}\left(a, a^{+}\right)=\frac{1}{\operatorname{det}\left(\alpha \alpha^{+}\right)^{\frac{1}{4}}} V_{F}\left(a, a^{+}\right)
$$

U_{F} is well-defined if matrix elements of C satisfy Fredholm (α) and Hilbert-Schmidt (β) conditions - satisfied for F from $T_{0}(1)$.

$$
\text { 1. } \operatorname{det}\left(\alpha \alpha^{+}\right)^{\frac{1}{4}}=e^{K_{T T}\left(g_{-}, g_{+}\right)}
$$

$$
\begin{gathered}
\text { 2. } U\left(g_{+}\right)=e^{K_{T T}\left(g_{+}\right)} V\left(g_{+}\right), \quad U\left(g_{-}^{-1}\right)=e^{K_{T T}\left(g_{-}\right)} V\left(g_{-}^{-1}\right) \\
\text { 3. } V(F)=V\left(g_{-}^{-1}\right) V\left(g_{+}\right) ; \quad U(F)=U\left(g_{-}^{-1}\right) U\left(g_{+}\right) \\
4 . \quad U\left(F_{1}\right) U\left(F_{2}\right)=e^{i \tilde{\alpha}_{2}\left(F_{1}, F_{2}\right)} U\left(F_{1} \circ F_{2}\right) \\
i \tilde{\alpha}_{2}\left(F_{1}, F_{2}\right)=i \alpha_{2}^{B e r}\left(F_{1}, F_{2}\right)+K_{T T}\left(F_{1} \circ F_{2}\right)-K_{T T}\left(F_{1}\right)-K_{T T}\left(F_{2}\right) \\
i \alpha_{2}^{B e r}\left(F_{1}, F_{2}\right)=-\log \operatorname{det}\left(1+\alpha_{2}^{-1} \beta_{2} \gamma_{1} \alpha_{1}^{-1}\right)
\end{gathered}
$$

Interestingly $\alpha_{2}^{B e r}\left(F_{1}, F_{2}\right)$ is expressed in terms of $g_{1,-}, g_{2,+}$ only.
$\alpha_{2}\left(F_{1}, F_{2}\right)$ is, of course, cohomlogical to Bott-Virasoro coycle:

$$
\alpha_{2}^{\text {Bott }}\left(F_{1}, F_{2}\right)=\int_{S^{1}} \log \left(F_{1}^{\prime}\left(F_{2}(x)\right)\right)^{\prime} \log \left(F_{2}^{\prime}(x)\right) d x
$$

Bosonic, abelian, $\phi(x)$ with $\Omega=\int_{S^{1}} \delta \phi \partial_{x} \delta \phi d x$ has non-abelian version $g(x) \in \operatorname{Maps}\left(S^{1}\right) \rightarrow \mathbf{G}$

$$
\Omega=k \int_{S^{1}} \operatorname{Tr}\left(\delta g g^{-1}\right) \partial_{x}\left(\delta g g^{-1}\right) d x
$$

invariant under $\operatorname{Diff}\left(S^{1}\right): \tilde{x}=F(x), \tilde{g}(\tilde{x})=g(x)$ (recall WZW).
Analog of free field ϕ^{\prime} is $J(x)=\partial_{x} g g^{-1} ; J(x)=F^{\prime}(x) \tilde{J}(F(x))$. $J(x)$ obey current algebra commutation relations with level $=k$.

Commutation relations for ϕ are replaced by exchange relations for $g(x)$ (Poisson bracket straightforwardly follows from this symplectic form: $\{g(x) \otimes g(y)\}=g(x) \otimes g(y) r^{ \pm}, x>y \quad$ AS, 1989)

$$
g(x) \otimes g(y)=g(y) \otimes g(x) R ; \quad x>y
$$

Currents $J(x)$, as well as $g(x)$, have free field representation - for every positive root Δ_{+}there is a free $\beta_{\Delta_{+}}, \gamma_{\Delta_{+}}$system and for every simple root μ free scalar field ϕ_{μ} with improved stress-tensor.

Now Berezin can be applied to these free fields in order to find the identificator - operator $V_{F}(J(x))=V_{F}(\beta, \gamma, \phi)$ such that:

$$
V_{F} J(x) V_{F}^{-1}=F^{\prime}(x) \tilde{J}(x)(F(x))
$$

and repeat all above steps. To be continued

HAPPY BIRTHDAY!

